

GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

BRANCH- CIVIL ENGINEERING

SEMESTER- 3RD

SUBJECT- Th1. STRUCTURAL MECHANICS

NAME OF THE FACULTY- ER. ALOKA RANJAN SAHU

E		Topic to be taken							
	SI. No		No. of period	Details of the tonics	Date	Topic No.	Topic Name	Date	Remarks
	1	Review Of Basic Concepts		1.1 Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram 1.2 Review of CG and MI of different sections	16.09.2022 - 22.09.2022		Basic Principle of Mechanics: Force, Moment, support conditions, Conditions of equilibrium, C.G & MI, Free body diagram Review of CG and MI of different sections	16.09.2022 20.09.2022 21.09.2022 29.09.2022	

2	Simple And Complex Stress, Strain	15	2.1 Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear strains, Complimentary shear stress - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants. 2.2 Application of simple stress and strain in	23.09.2022 - 21.10.2022	2.1	Simple Stresses and Strains Introduction to stresses and strains: Mechanical properties of materials – Rigidity, Elasticity, Plasticity, Compressibility, Hardness, Toughness, Stiffness, Brittleness, Ductility, Malleability, Creep, Fatigue, Tenacity, Durability, Types of stresses -Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear stresses, Types of strains - Tensile, Compressive and Shear stresses - Diagonal tensile / compressive Stresses due to shear, Elongation and Contraction, Longitudinal and Lateral strains, Poisson's Ratio, Volumetric strain, computation of stress, strain, Poisson's ratio, change in dimensions and volume etc, Hooke's law - Elastic Constants, Derivation of relationship between the elastic constants. Application of simple stress and strain in engineering field: Behaviour of ductile and brittle materials under direct loads, Stress Strain curve of a ductile material, Limit of proportionality, Elastic limit, Yield stress, Ultimate stress, Breaking stress, Percentage	12.10.2022 13.10.2022 14.10.2022 14.10.2022 17.10.2022 18.10.2022	
			between the elastic constants.			proportionality, Elastic limit, Yield stress,	10.10.2022	
			ductile		2.3	Deformation of prismatic bars due to uniaxial	19.10.2022	

			3.1 Stresses in beams due to bending: Bending stress in beams – Theory of simple bending – Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus 3.2 Shear stresses in beams: Shear stress distribution in beams of rectangular, circular		3.1	Assumptions – Moment of resistance – Equation for Flexure– Flexural stress distribution – Curvature of beam – Position of N.A. and Centroidal Axis – Flexural rigidity – Significance of Section modulus Shear stresses in beams: Shear stress	26.10.2022 27.10.2022 28.10.2022 01.11.2022	
3	Stresses In Beams and Shafts	10	and standard sections symmetrical about		3.4	vertical axis.	02.11.2022 03.11.2022 04.11.2022 05.11.2022	
4	Columns and Struts	4	4.1 Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	04.11.2022 - 10.11.2022	4.1	dams and retaining walls Columns and Struts, Definition, Short and Long columns, End conditions, Equivalent length / Effective length, Slenderness ratio, Axially loaded short and long column, Euler's theory of long columns, Critical load for Columns with different end conditions	10.11.2022 11.11.2022 12.11.2022 15.11.2022	

5	Shear Force and Bending Moment	12	5.1 Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. 5.2 Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	11.11.2022 - 22.11.2022	5.1	Types of loads and beams: Types of Loads: Concentrated (or) Point load, Uniformly Distributed load (UDL), Types of Supports: Simple support, Roller support, Hinged support, Fixed support, Types of Reactions: Vertical reaction, Horizontal reaction, Moment reaction, Types of Beams based on support conditions: Calculation of support reactions using equations of static equilibrium. Shear force and bending moment in beams: Shear Force and Bending Moment: Signs Convention for S.F. and B.M, S.F and B.M of general cases of determinate beams with concentrated loads and udl only, S.F and B.M diagrams for Cantilevers, Simply supported beams and Over hanging beams, Position of maximum BM, Point of contra flexure, Relation between intensity of load, S.F and B.M.	17.11.2022 21.11.2022 22.11.2022 24.11.2022 26.11.2022 02.12.2022 03.12.2022 05.12.2022 06.12.2022	
6	Slope and Deflection	10	6.1 Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection. 6.2 Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	24.11.2022 - 02.12.2022	6.1	Introduction: Shape and nature of elastic curve (deflection curve); Relationship between slope, deflection and curvature (No derivation), Importance of slope and deflection. Slope and deflection of cantilever and simply supported beams under concentrated and uniformly distributed load (by Double Integration method, Macaulay's method).	08.12.2022 09.12.2022 10.12.2022 12.12.2022 15.12.2022 16.12.2022	

7	Indeterminate Beams	10	7.1 Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span)	03.12.2022 - 17.12.2022		Indeterminacy in beams, Principle of consistent deformation/compatibility, Analysis of propped cantilever, fixed and two span continuous beams by principle of superposition, SF and BM diagrams (point load and udl covering full span)	17.12.2022 19.12.2022 20.12.2022 22.12.2022 23.12.2022	
8	Trusses	10	8.1 Introduction: Types of trusses, statically determinate and indeterminate trusses, degree of indeterminacy, stable and unstable trusses, advantages of trusses. 8.2 Analysis of trusses: Analytical method (Method of joints, method of Section)	18.12.2022 - 10.01.2022	8.2	determinate and indeterminate trusses, degree of indeterminacy, stable and unstable	02.01.2023 03.01.2023 07.01.2023 09.01.2023 10.01.2023	

Signature apply Stamp of HOD:
Civil Engg.
Gandhi School of Engg.
Berhampur (Gm.)

Signature & Stamp of HOD