

GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

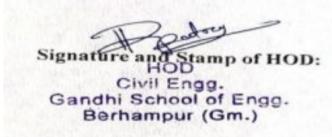
BRANCH- CIVIL ENGINEERING

SEMESTER- 4th

SUBJECT- Th1. STRUCTURAL DESIGN - I

NAME OF THE FACULTY- Er. ALOKA RANJAN SAHU

TOPICS TO BE TAKEN ACTUALLY TOPIC TAKEN


CI	Tanial	No of			Topic	Topic Name	Date	
SI. No	Topic/ Module	No of Periods	Details of the Topics	Date	no.			Remark
1	Working stress method (WSM)	5	1.1 Objectives of design and detailing. State the different methods of design of concrete structures. 1.2 Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. 1.3 Flexural design and analysis of single reinforced sections from first principles. 1.4 Concept of under reinforced, over reinforced and balanced sections. 1.5 Advantages and disadvantages of WSM, reasons for its obsolescence.	13.02.2023 - 15.02.2023		Objectives of design and detailing. State the different methods of design of concrete structures. Introduction to reinforced concrete, R.C. sections their behavior, grades of concrete and steel. Flexural design and analysis of single reinforced sections from first principles. Concept of under reinforced, over reinforced and balanced sections. Advantages and disadvantages of WSM, reasons for its obsolescence.	13.02.2023 14.02.2023	
2	Philosophy of Limit state method (LSM)	3	2.1 Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy. 2.2 Types of limit states, partial safety factors for materials strength etc. 2.3 Study of I.S specification regarding spacing of reinforcement in	17.02.2023 - 20.02.2023		Definition, Advantages of LSM over WSM, IS code suggestions regarding design philosophy. Types of limit states, partial safety factors for materials strength etc. Study of I.S specification regarding spacing of reinforcement in slab.	17.02.2023 20.02.2023	

3	Analysis and design of singly and double reinforced sections (LSM)	15	3.1 Limit state of collapse (flexure), Assumptions, Stress-Strain relationship for concrete and steel section etc. 3.2 Concept of under- reinforced, over-reinforced and limiting section, 3.3 Analysis and design. 3.4 Necessity of doubly reinforced section.	21.02.2023	3.2 3.3 3.4	Necessity of doubly reinforced section.	21.02.2023 22.02.2023 24.02.2023 25.02.2023 01.03.2023 03.03.2023 10.03.2023 11.03.2023	
4	Shear, Bond and Developme nt Length (LSM)	4	4.1 Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress. 4.2 Bond and types of bond, bond stress, check for bond stress. 4.3 Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear.	14.03.2023 - 17.03.2023	4.2 4.3	Nominal shear stress in R.C. section, design shear strength of concrete, maximum shear stress. Bond and types of bond, bond stress, check for bond stress. Numerical problems on deciding whether shear reinforcement is required or not, check for adequacy of the section in shear.	14.03.2023 15.03.2023 16.03.2023	

5 De	Analysis and esign of T-Beam (LSM)	15	5.1 General features, advantages, effective width of flange as per IS: 456-2000 code provisions. 5.2 Analysis of singly reinforced T-Beam, strain diagram & stress diagram etc. 5.3 Simple numerical problems on deciding effective flange width.	18.03.2023	5.2	General features, advantages, effective width of flange as per IS: 456-2000 code provisions. Analysis of singly reinforced T-Beam, strain diagram & stress diagram etc. Simple numerical problems on deciding effective flange width.	18.03.2023 20.03.2023 24.03.2023 25.03.2023 27.03.2023 31.03.2023 03.04.2023 04.04.2023 05.04.2023	
------	--	----	---	------------	-----	---	--	--

6 Des Sla Stai	nalysis and sign of ab and air case LSM)	15	6.1 Design of simply supported one-way slabs for flexure check for deflection control and shear. 6.2 Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear. 6.3 Design of two-way simply supported slabs for flexure with corner free to lift. 6.4 Design of dog-legged staircase 6.5 Detailing of reinforcement in stairs spanning longitudinally.		6.3 6.4 6.5	Design of simply supported one-way slabs for flexure check for deflection control and shear. Design of one-way cantilever slabs and cantilevers chajjas for flexure check for deflection control and check for development length and shear. Design of two-way simply supported slabs for flexure with corner free to lift. Design of dog-legged staircase Detailing of reinforcement in stairs spanning longitudinally.	10.04.2023 12.04.2023 18.04.2023 19.04.2023 24.04.2023 25.04.2023 26.04.2023 28.04.2023	
----------------------	---	----	--	--	-------------------	--	--	--

Design of Axially column loaded 7 columns 18 design rectant footings (LSM) of isol	esign of axially loaded short square,	17.05.2023 Square, rectangular and circular columns (with lateral ties only). 7.4 Types of footing, Design of isolated square column footing of uniform thickness for flexure and shear. 17.05.2023
--	---------------------------------------	---

Signature & Stamp of HOD