GANDHI SCHOOL OF ENGINEERING ## BHABANDHA, BERHAMPUR BRANCH- CIVIL ENGINEERING SEMESTER-5TH SUBJECT- Th2. STRUCTURAL DESIGN- II NAME OF THE FACULTY-Er.ALOKA RANJAN SAHU | 63 | | ы з | Topic to be taken | | Actual topic taken | | | | |-----------|--|------------------|---|------------|--------------------------|---|--|---------| | SI.
No | 1000 Note - 1000 1000 1000 1000 1000 1000 1000 1 | No. of
period | Details of the topics | Date | Topic
No. | Topic Name | Date | Remarks | | 1 | Introduction | 5 | 1.1 Common steel structures, Advantages & disadvantages of steel structures. 1.2 Types of steel, properties of structural steel. 1.3 Rolled steel sections, special considerations in steel design. 1.4 Loads and load combinations. 1.5 Structural analysis and design philosophy. 1.6 Brief review of Principles of Limit State design | 23.09.2022 | 1.2
1.3
1.4
1.5 | Common steel structures, Advantages & disadvantages of steel structures. Types of steel, properties of structural steel. Rolled steel sections, special considerations in steel design. Loads and load combinations. Structural analysis and design philosophy. Brief review of Principles of Limit State design | 15.09.2022
16.09.2022
19.09.2022
20.10.2022
21.09.2022 | | | 2.1 Bolted Connections 2.1.1 Classification of bolts, advantages and disadvantages of bolted connections. 2.1.2 Different terminology, spacing and edge distance of bolt holes. 2.1.3 Types of bolted connections. 2.1.4 Types of action of fasteners, assumptions and principles of design. 2.1.5 Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity), reduction factors, and shear capacity HSFG bolts. 2.1.6 Analysis & design of Joints using bearing type and HSFG bolts (except eccentric load and prying forces) 2.1.7 Efficiency of a joint. 2.2 Welded Connections: 2.2.1 Advantages and Disadvantages of welded connection 2.2.2 Types of welded joints and specifications for welding 2.2.3 Design stresses in welds. 2.2.4 Strength of welded joints. | of 26.09.2022 18.10.2022 2.1.6 Strength of plates in a joint, strength of bearing type bolts (shear capacity& bearing capacity), reduction factors, and shear cap of HSFG bolts. Analysis & design of Joints using bearing to and HSFG bolts (except eccentric load and prying forces) 2.1.7 Efficiency of a joint. Welded Connections: Advantages and Disadvantages of welded | 26.09.2022 27.12.2022 28.09.2022 11.10.2022 12.10.2022 | |--|--|--| |--|--|--| | 3 | Design of
Steel
tension
Members | 10 | 3.1 Common shapes of tension members. 3.2 Maximum values of effective slenderness ratio. 3.3 Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | 19.10.2022
02.11.2022 | 3.1
3.2
3.3 | Common shapes of tension members. Maximum values of effective slenderness ratio. Analysis and Design of tension members.(Considering strength only and concept of block shear failure.) | 19.10.2022
21.10.2022
28.10.2022
01.11.2022
02.11.2022
04.11.2022
09.11.2022
10.11.2022 | | |---|---|----|---|--------------------------|-------------------|---|--|--| | 4 | Design of
Steel
Compressio
n members | 10 | 4.1 Common shapes of compression members. 4.2 Buckling class of cross sections, slenderness ratio 4.3 Design compressive stress and strength of compression members. 4.4 Analysis and Design of compression members (axial load only). | 04.11.2022
18.11.2022 | 4.1
4.2
4.3 | Common shapes of compression members. Buckling class of cross sections, slenderness ratio Design compressive stress and strength of compression members. Analysis and Design of compression members (axial load only). | 11.11.2022
14.11.2022
15.11.2022
17.11.2022
19.11.2022
02.12.2022 | | | 5 | Design of
Steel beams | 10 | 5.1 Common cross sections and their classification. 5.2 Deflection limits, web buckling and web crippling. 5.3 Design of laterally supported beams against bending and shear. | 21.11.2022
30.11.2022 | | Common cross sections and their classification. Deflection limits, web buckling and web crippling. Design of laterally supported beams against bending and shear. | 03.12.2022
07.12.2022
08.12.2022
09.12.2022
10.12.2022 | | | 6 | Design of
Tubular | 10000 | 6.1 Round Tubular Sections, Permissible Stresses
6.2 Tubular Compression & Tension Members | 02.12.2022 | 6.2 | Round Tubular Sections, Permissible Stresses Tubular Compression & Tension Members Joints in Tubular trusses | 15.12.2022
16.12.2022
17.12.2022 | | |---|------------------------------------|-------|--|------------|-----|--|--|---| | | Steel
Structures | | 6.3 Joints in Tubular trusses | 07.12.2022 | | | 21.12.2022
22.12.2023 | × | | 7 | Design of
Masonry
Structures | 9 | 7.1 Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | | 5 | Design considerations for Masonry walls & Columns, Load Bearing & Non-Load Bearing walls, Permissible stresses, Slenderness Ratio, Effective Length, Height & Thickness. | 23.12.2023
02.01.2023
03.01.2023
06.01.2023
07.01.2023 | | Signature & Stamp of HOD