

GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

SUBJECT- CIRCUIT AND NETWORK THEORY

BRANCH: ELECTRICAL ENGINEERING

SEM:3RD

NAME OF THE FACULTY :ER. AMARESH CHOUDHURY & ER. S.K MAHARANA

SI. No	Topic/Module	No. of period	Topic to be taken Details of the topics	Date	Topic No.	Actual topic taken Topic Name	Date	Remarks
1	MAGNETIC CIRCUITS	07	MAGNETIC CIRCUITS 1.1 Introduction 1.2 Magnetizing force, Intensity, MMF, flux and their relations 1.3 Permeability, reluctance and permeance 1.4 Analogy between electric and Magnetic Circuits 1.5 B-H Curve 1.6 Series & parallel magnetic circuit 1.7 Hysteresis loop	20.09.2022 TO 30.09.2022	1.1 1.2 1.3 1.4 1.5 1.6 1.7	Introduction Magnetizing force, Intensity, MMF, flux and their relations Permeability, reluctance and permeance Analogy between electric and Magnetic Circuits B-H Curve Series & parallel magnetic circuit Hysteresis loop	20.09.2022 21.09.2022 23.09.2022 24.09.2022 26.09.2022 28.09.2022 29.09.2022 30.09.2022	

2	COUPLED CIRCUITS:	05	COUPLED CIRCUITS: 2 . 1 Self Inductance and Mutual Inductance 2 . 2 Conductively coupled circuit and mutual impedance 2 . 3 Dot convention 2 . 4 Coefficient of coupling 2 . 5 Series and parallel connection of coupled inductors. 2 . 6 Solve numerical problems	12.10.2022 TO 19.10.2022	2.1 2.2 2.3 2.4 2.5 2.6	Self Inductance and Mutual Inductance Conductively coupled circuit and mutual impedance Dot convention Coefficient of coupling Series and parallel connection of coupled inductors. Solve numerical problems	12.10.2022 13.10.2022 14.10.2022 15.10.2022 17.10.2022 19.10.2022	
3	CIRCUIT ELEMENTS AND ANALYSIS:	06	CIRCUIT ELEMENTS AND ANALYSIS: 3 . 1 Active, Passive, Unilateral & bilateral, Linear & Non linear elements 3 . 2 Mesh Analysis, Mesh Equations by inspection 3 . 3 Super mesh Analysis 3 . 4 Nodal Analysis, Nodal Equations by inspection 3 . 5 Super node Analysis. 3 . 6 Source Transformation Technique 3 . 7 Solve numerical problems (With Independent Sources Only)	20.10.2022 TO 04.11.2022	3.1 3.2 3.3 3.4 3.5 3.6 3.7	Active, Passive, Unilateral & bilateral, Linear & Non linear elements Mesh Analysis, Mesh Equations by inspection Super mesh Analysis Nodal Analysis, Nodal Equations by inspection Super node Analysis. Source Transformation Technique Solve numerical problems (With Independent Sources Only)	20.10.2022 22.10.2022 27.10.2022 02.11.2022 03.11.2022 04.11.2022	
4	NETWORK THEOREMS:	08	NETWORK THEOREMS: 4.1 Star to delta and delta to star transformation 4.2 Super position Theorem 4.3 Thevenin's Theorem	05.11.2022 TO 19.11.2022	4.1 4.2 4.3 4.4 4.5	Star to delta and delta to star transformation Super position Theorem Thevenin's Theorem Norton's Theorem	05.11.2022 09.11.2022 10.11.2022 11.11.2022 12.11.2022	

			 4.4 Norton's Theorem 4.5 Maximum power Transfer Theorem. 4.6 Solve numerical problems (With Independent Sources Only) 		4.6	Maximum power Transfer Theorem. Solve numerical problems (With Independent Sources Only)	14.11.2022 17.11.2022 19.11.2022	
5	AC CIRCUIT AND RESONANCE:	08	AC CIRCUIT AND RESONANCE: 5.1 A.C. through R-L, R-C & R-L-C Circuit 5.2 Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method. 5.3 Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits 5.4 Power factor & power triangle. 5.5 Deduce expression for active, reactive, apparent power. 5.6 Derive the resonant frequency of series resonance and parallel resonance circuit 5.7 Define Bandwidth, Selectivity & Q-factor in series circuit. 5.8 Solve numerical problems	21.11.2022 TO 02.12.2022	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	A.C. through R-L, R-C & R-L-C Circuit Solution of problems of A.C. through R-L, R-C & R-L-C series Circuit by complex algebra method. Solution of problems of A.C. through R-L, R-C & R-L-C parallel & Composite Circuits Power factor & power triangle. Deduce expression for active, reactive, apparent power. Derive the resonant frequency of series resonance and parallel resonance circuit Define Bandwidth, Selectivity & Q-factor in series circuit. Solve numerical problems	21.11.2022 23.11.2022 23.11.2022 23.11.2022 25.11.2022 26.11.2022 02.12.2022	
6	POLYPHASE CIRCUIT	06	 POLYPHASE CIRCUIT 6.1 Concept of poly-phase system and phase sequence 6.2 Relation between phase and line quantities in star & delta connection 6.3 Power equation in 3-phase balanced circuit. 6.4 Solve numerical problems 	05.12.2022 TO 10.12.2022	6.1 6.2 6.3 6.4 6.5 6.6	Concept of poly-phase system and phase sequence Relation between phase and line quantities in star & delta connection Power equation in 3-phase balanced circuit. Solve numerical problems Measurement of 3-phase	05.12.2022 07.12.2022 08.12.2022 09.12.2022 10.12.2022	

7	TRANSIENTS:	06	 6.5 Measurement of 3-phase power by two wattmeter method. 6.6 Solve numerical problems. TRANSIENTS: 7.1 Steady state & transient state response. 7.2 Response to R-L, R-C & RLC circuit under DC condition. 7.3 Solve numerical problems 	12.12.2022 TO 19.12.2022	7.1 7.2 7.3	power by two wattmeter method. Solve numerical problems. Steady state & transient state response. Response to R-L, R-C & RLC circuit under DC condition. Solve numerical problems	12.12.2022 13.12.2022 14.12.2022 15.12.2022 16.12.2022 19.12.2022	
8	TWO-PORT NETWORK:	08	TWO-PORT NETWORK: 8.1 Open circuit impedance (z) parameters 8.2 Short circuit admittance (y) parameters 8.3 Transmission (ABCD) parameters 8.4 Hybrid (h) parameters. 8.5 Inter relationships of different parameters. 8.6 T and π representation. 8.7 Solve numerical problems	21.12.2022 TO 24.12.2022	8.1 8.2 8.3 8.4 8.5 8.6 8.7	Open circuit impedance (z) parameters Short circuit admittance (y) parameters Transmission (ABCD) parameters Hybrid (h) parameters. Inter relationships of different parameters. T and π representation. Solve numerical problems	21.12.2022 22.12.2022 22.12.2022 23.12.2022 22.12.2022 23.12.2022 23.12.2022 24.12.2022	

9	FILTERS:	09	 FILTERS: 9.1 Define filter 9.2 Classification of pass Band, stop Band and cut-off frequency. 9.3 Classification of filters 9.4 Constant – K low pass filter. 9.5 Constant – K high pass filter. 9.6 Constant – K Band pass filter. 9.7 Constant – K Band elimination filter. 9.8 Solve Numerical problems 	23.12.2022 TO 05.01.2023	9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8	Define filter Classification of pass Band, stop Band and cut-off frequency. Classification of filters Constant – K low pass filter. Constant – K high pass filter. Constant – K Band pass filter. Constant – K Band elimination filter. Solve Numerical problems	23.12.2022 24.12.2022 03.01.2023 05.01.2023	
---	----------	----	---	--------------------------------	--	--	--	--

orda HOD Electrical Engg. Gandhi School of Engg. Berhampur (Gm.)

HOD