

GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

BRANCH:- ELECTRICAL ENGINEERING

SEMESTER:- 6TH

SUBJECT:- CONTROL SYSTEM ENGINEERING

Name of the Faculty- Er. SURABHI TRIPATHY & Er .MONALISHA GOUDA

		Topic to be taken				Actual topictaken		
Sl. No	Topic/Module	No. of period	Details of the topics	Date	Topic No.	Topic Name	Date	Remark s
1	Fundamental of control system	04	 1.1. Classification of Control system 1.2. Open loop system & Closed loop system and its comparison 1.3. Effects of Feed back 1.4. Standard test Signals(Step, Ramp, Parabolic, Impulse Functions) 1.5. Servomechanism 	13.02.2023 TO 16.02.2023	1.1 1.2 1.3 1.4 1.5	Classification of Control system Open loop system & Closed loop system and its comparison Effects of Feed back Standard test Signals(Step, Ramp, Parabolic, Impulse Functions) Servomechanism	13.02.2023 14.02.2023 15.02.2023 16.02.2023	
2	Mathematical model of a system	12	 2.1. Transfer Function & Impulse response, 2.2. Properties, Advantages & Disadvantages of Transfer Function 2.3. Poles & Zeroes of transfer Function 2.4. Simple problems of transfer function of network. 2.5. Mathematical modeling of Electrical Systems(R, L, C, Analogous systems) 	17.02.2023 TO 06.03.2023	 2.1 2.2 2.3 2.4 2.5 	Transfer Function & Impulse response, Properties, Advantages & Disadvantages of Transfer Function Poles & Zeroes of transfer Function Simple problems of transfer function of network. Mathematical modeling of Electrical Systems(R, L, C, Analogous systems	17.02.2023 20.02.2023 21.02.2023 22.02.2023 23.02.2023 24.02.2023 27.02.2023 28.02.2023 01.03.2023 02.03.2023 03.03.2023 06.03.2023	

3 Control compor	system ients	12	3.1. Components of Control System 3.2. Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors	09.03.2023 TO 27.03.2023	3.1 3.2	Components of Control System Gyroscope, Synchros, Tachometer, DC servomotors, Ac Servomotors	09.03.2023 10.03.2023 13.03.2023 14.03.2023 15.03.2023 16.03.2023 17.03.2023 20.03.2023 21.03.2023 22.03.2023 24.03.2023 27.03.2023 28.03.2023	
4 Control system compor	ents		 4.1. Definition: Basic Elements of Block Diagram 4.2. Canonical Form of Closed loop Systems 4.3. Rules for Block diagram reduction 4.4. Procedure for of Reduction of Block Diagram 4.5. Simple Problem for equivalent transfer function 4.6. Basic Definition in Signal Flow Graph & properties 4.7. Construction of Signal Flow graph from Block diagram 4.8. Mason's Gain formula 4.9. Simple problems in Signal flow graph for network 	28.03.2023 TO 17.04.2023	 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 	Definition: Basic Elements of Block Diagram Canonical Form of Closed loop Systems Rules for Block diagram reduction Procedure for of Reduction of Block Diagram Simple Problem for equivalent transfer function Basic Definition in Signal Flow Graph & properties Construction of Signal Flow graph from Block diagram Mason's Gain formula	28.03.2023 03.04.2023 04.04.2023 05.04.2023 10.04.2023 11.04.2023 12.04.2023 13.04.2023 17.04.2023	

5	TIME RESPONSE	10	5 . 1 Time response of control system.	18.04.2023	5.1	Time response of control		
	ANALYSIS			ТО	5 0	system.	18.04.2023	
				03.05.2023	5.2	 Standard Test 	19.04.2023	
			5.2 Standard Test signal.		5.2.1	signal.	20.04.2023	
			5.2.1. Step signal		5 2 2	 Step signal 	24.04.2023	
			5.2.2. Ramp Signal		3.2.2	Ramp Signal	25.04.2023	
			5.2.3. Parabolic Signal		5.2.3	Parabolic Signal	20.04.2023	
			5.2.4. Impulse Signal		504	Impulse Signal	01 05 2023	
			5.3 Time Response of first order system		5.2.4	Time Response of first	02.05.2023	
			with:		5.3	order system with:	03.05.2023	
			5.3.1. Unit step response		F Q 1	Unit step		
			5.3.2. Unit impulse response.		5.3.1	response		
					5.3.2	• Unit		
			5.4 Time response of second order		5 1	impulse		
			system to the unit step input.		5.4	response.		
			5.4.1. Imeresponse specification.		5.4.1	Time response of second		
			5.4.2. Derivation of expression		510	order system to the unit		
			for rise time, peak time, peak overshoot,		5.4.2	step input.		
			settling time and steady state error.		5.4.3	Time response		
			5.4.3. Steady state error and			specification.		
			error constants.		5.5	Derivation of expression for		
			5.5 Types of control system. [Steady		5.6	rise time, peak time, peak		
			state errors in Type-0, Type-1, Type-2			overshoot, settling time		
			Systems		5.7	and steady state error.		
			transfor function			Steady state error and error		
			5.7 Posponso with D. DI. DD and DID.			constants.		
			soptrollor			Types of control system.[
			controller			Steady state errors in		
						Type-0, Type-1, Type-2		
						system]		
						Effect of adding poles and		
						zero to transfer function.		
						Response with P, PI, PD and		
						PID controller		

6	ANALYSIS OF	10	6.1 Root locus concept.	04.05.2023	6.1	Root locus concept.	04.05.2023	
	STABILITY BY			ТО	6.2		08.05.2023	
	ROOT LOCUS		6.2 Construction of root loci.	10.05.2023	6.3	Construction of root loci.	09.05.2023	
	TECHNIQUE.		6.3 Rules for construction of the root		6.4		10.05.2023	
			locus.		011	Rules for construction of the		
						root locus.		
			6.4 Effect of adding poles and zeros to G(s)					
			and H(s).			Effect of adding poles and		
						zeros to G(s) and H(s).		
7	FREQUENCY	10	7.1 Correlation between time response	11.05.2023	7.1	Correlation between time	11.05.2023	
	RESPONSE		and frequency response.	ТО	7.2	response and frequency	12.05.2023	
	ANALYSIS.		7.2 Polar plots.	15.05.2023	1.2	response.	15.05.2023	
					7.3	Polar plots.		
			7.3 Bode plots.		7.4	Bode plots.		
					/.4	All pass and minimum phase		
			7.4 All pass and minimum phase system.		7.5	system.		
					76	Computation of Gain margin		
			7.5 Computation of Gain margin and phase		7.0	and phase margin.		
			margin.		7.7	Log magnitude versus phase		
						plot.		
			7 . 6 Log magnitude versus phase plot.					
						Closed loop frequency		
			7.7 Closed loop frequency response.			response		
8	NYQUIST PLOT	10	8.1 Principle of argument.	16.05.2023	8.1	Principle of argument.	16.05.2023	
			8.2 Nyquist stability criterion.	ТО	8.2	Nyquist stability criterion.	18.05.2023	
			8.3 Niquist stability criterion applied to	22.05.2023	8.3	Niquist stability criterion	22.05.2023	
			inverse polar plot.		8.4	applied to inverse polar plot.	23.05.2023	
			8.4 Effect of addition of poles and zeros to		8.5	Effect of addition of poles	23.05.2023	
			G(S) H(S) on the shape of Niquist plot.			and zeros to G(S) H(S) on the		
						shape of Niquist plot.		
			8.5 Assessment of relative stability.			Assessment of relative		
						stability.		
			8.6 Constant M and N circle 8.7 Nicholas					
			chart.					

