

GANDHI SCHOOL OF ENGINEERING

BHABANDHA, BERHAMPUR

BRANCH:- ELECTRICAL ENGINEERING

SEMESTER:- 5TH

SUBJECT- ENERGY CONVERSION – II

Name of Faculty- ER. BISHNU PRASAD PANDA

			Topic to be taken			Actual topictaken		
SI. No	Topic/Module	No. of period	Details of the topics	Date	Topic No.	Topic Name	Date	Remarks
1	ALTERNATOR	14	ALTERNATOR: 1.1. Types of alternator and their constructional features. 1.2. Basic working principle of alternator and the relation between speed and frequency. 1.3. Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor). 1.4. Explain harmonics, its causes and impact on winding factor. 1.5. E.M.F equation of alternator.	17.09.202 2 To 17.10.202 2	1.1 1.2 1.3 1.4 1.5 1.6	Types of alternator and their constructional features. Basic working principle of alternator and the relation between speed and frequency. Terminology in armature winding and expressions for winding factors (Pitch factor, Distribution factor). Explain harmonics, its	17.09.2022 19.09.2022 20.09.2022 22.09.2022 22.09.2022 24.09.2022 27.09.2022 27.09.2022 29.09.2022 30.90.2022 11.10.2022	

(Solve numerical problems).		causes and impact on	13.10.2022	
1.6. Explain Armature reaction and its		winding factor.		
effect on emf at different power	1.7	E.M.F equation of		
factor of load.	1.8	alternator. (Solve	17.10.2022	
1.7. The vector diagram of loaded	1.8.1	numerical problems).		
alternator. (Solve numerical problems)	1.8.2	Explain Armature reaction		
1.8. Testing of alternator (Solve	1.8.2	and its effect on emf at		
numerical problems)		different power factor of		
1.8.1. Open circuit test.		load.		
1.8.2. Short circuit test.		The vector diagram of		
1.9. Determination of voltage	1.9	loaded alternator. (Solve		
regulation of Alternator by direct	1.10	numerical problems)		
loading and synchronous impedance	1.11			
method. (Solve numerical problems)		Testing of alternator (Solve		
1.10. Parallel operation of alternator		numerical problems)		
using synchro-scope and dark & bright		Open circuit test.		
lamp method.		Short circuit test.		
1.11. Explain distribution of load by				
parallel connected alternators.		Determination of voltage		
		regulation of Alternator by		
		direct loading and		
		synchronous impedance		
		method. (Solve numerical		
		problems)		
		Parallel operation of		
		alternator using synchro-		
		scope and dark & bright		
		lamp method.		
		Explain distribution of load		
		by parallel connected		
		alternators.		

2	SYNCHRONO US MOTOR:	08	SYNCHRONOUS MOTOR: 2.1. Constructional feature of Synchronous Motor. 2.2. Principles of operation, concept of load angle 2.3. Derive torque, power developed. 2.4. Effect of varying load with constant excitation. 2.5. Effect of varying excitation with constant load. 2.6. Power angle characteristics of cylindrical rotor motor. 2.7. Explain effect of excitation on Armature current and power factor. 2.8. Hunting in Synchronous Motor. 2.9. Function of Damper Bars in synchronous motor and generator. 2.10. Describe method of starting of Synchronous motor. 2.11. State application of synchronous motor	18.10.202 2 To 12.11.202 2	2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11	Constructional feature of Synchronous Motor. Principles of operation, concept of load angle Derive torque, power developed. Effect of varying load with constant excitation. Effect of varying excitation with constant load. Power angle characteristics of cylindrical rotor motor. Explain effect of excitation on Armature current and power factor. Hunting in Synchronous Motor. Function of Damper Bars in synchronous motor and generator. Describe method of starting of Synchronous motor. State application of synchronous motor	18.10.2022 19.10.2022 20.10.2022 27.10.2022 01.11.2022 05.11.2022 12.11.2022	
3	THREE PHASE INDUCTION MOTOR	14	THREE PHASE INDUCTION MOTOR: 3.1. Production of rotating magnetic field. 3.2. Constructional feature of Squirrel cage and Slip ring induction motors. 3.3. Working principles of operation of 3-phase Induction motor.	14.11.202 2 To 12.12.202 2	3.1 3.2 3.3 3.4 3.5 3.6	Production of rotating magnetic field. Constructional feature of Squirrel cage and Slip ring induction motors. Working principles of operation of 3-phase Induction motor.	14.11.2022 17.11.2022 19.11.2022 21.11.2022 22.11.2022 24.11.2022 26.11.2022	

	a.4. Define slip speed, slip and establish the relation of slip with rotor quantities. 3.5. Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems) 3.6. Torque-slip characteristics. 3.7. Derive relation between full load torque and starting torque etc. (solve numerical problems) 3.8. Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems) 3.9. Methods of starting and different types of starters used for three phase Induction motor. 3.10. Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods. 3.11. Plugging as applicable to three phase induction motor. 3.12. Describe different types of motor enclosures. 3.13. Explain principle of Induction Generator and state its applications.	3.7 3.8 3.9 3.10 3.11 3.12 3.13	Define slip speed, slip and establish the relation of slip with rotor quantities. Derive expression for torque during starting and running conditions and derive conditions for maximum torque. (solve numerical problems) Torque-slip characteristics. Derive relation between full load torque and starting torque etc. (solve numerical problems) Establish the relations between Rotor Copper loss, Rotor output and Gross Torque and relationship of slip with rotor copper loss. (solve numerical problems) Methods of starting and different types of starters used for three phase Induction motor. Explain speed control by Voltage Control, Rotor resistance control, Pole changing, frequency control methods. Plugging as applicable to three phase induction motor. Describe different types of	02.12.2022 03.12.2022 06.12.2022 19.12.2022 10.12.2022 12.12.2022	
--	--	---	--	--	--

4	SINGLE PHASE INDUCTION MOTOR	08	SINGLE PHASE INDUCTION MOTOR: 4.1. Explain Ferrari's principle. 4.2. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor. 4.3. Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors. 4.3.1. Split phase motor. 4.3.2. Capacitor Start motor. 4.3.3. Capacitor start, capacitor run motor. 4.3.4. Permanent capacitor type motor. 4.3.5. Shaded pole motor. 4.4. Explain the method to change the direction of rotation of above motors.	13.12.202 2 To 10.01.202 3	4.1 4.2 4.3 4.3.1 4.3.2 4.3.3 4.3.4 4.3.5 4.4	motor enclosures. Explain principle of Induction Generator and state its applications. Explain Ferrari's principle. Explain double revolving field theory and Cross-field theory to analyze starting torque of 1-phase induction motor. Explain Working principle, Torque speed characteristics, performance characteristics and application of following single phase motors. Split phase motor. Capacitor Start motor. Capacitor Start motor. Capacitor start, capacitor run motor. Permanent capacitor type motor. Shaded pole motor. Explain the method to change the direction of rotation of above motors.	13.12.2022 15.12.2022 19.12.2022 20.12.2022 22.12.2022 02.01.2023 05.01.2023 07.01.2023 10.01.2023	
5	COMMUTAT	06	COMMUTATOR MOTORS:	10.01.202	5.1	Construction, working	10.01.2023	
	OR MOTORS		5.1. Construction, working principle, running characteristic and application	3 To	5.2	principle, running characteristic and	11.01.2023	
			of single phase series motor.	To	5.3	application of single phase		
			5.2. Construction, working principle	11.01.202		series motor.		
			and application of Universal motors.	3		Construction, working		

6	SPECIAL ELECTRICAL MACHINE	05	5.3. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor. SPECIAL ELECTRICAL MACHINE: 6.1. Principle of Stepper motor. 6.2. Classification of Stepper motor 6.3. Principle of variable reluctant stepper motor. 6.4. Principle of Permanent magnet stepper motor. 6.5. Principle of hybrid stepper motor. 6.6. Applications of Stepper motor.	6.1 6.2 6.3 6.4	principle and application of Universal motors. Working principle of Repulsion start Motor, Repulsion start Induction run motor, Repulsion Induction motor. Principle of Stepper motor. Classification of Stepper motor Principle of variable reluctant stepper motor. Principle of Permanent magnet stepper motor. Principle of hybrid stepper motor. Applications of Stepper	
				6.6	Applications of Stepper motor.	
7	THREE PHASE TRANSFORM ERS	05	THREE PHASE TRANSFORMERS: 7.1. Explain Grouping of winding, Advantages. 7.2. Explain parallel operation of the three phase transformers. 7.3. Explain tap changer (On/Off load tap changing) 7.4. Maintenance Schedule of Power Transformers.	7.1 7.2 7.3	Explain Grouping of winding, Advantages. Explain parallel operation of the three phase transformers. Explain tap changer (On/Off load tap changing) Maintenance Schedule of Power Transformers.	

HOD