

## **GANDHI SCHOOL OF ENGINEERING**

## **BHABANDHA, BERHAMPUR**

| BRANCH:- ELECTRONICS & TELECOMMUNICATION ENGINEERING |
|------------------------------------------------------|
| SEMESTER:- 6 <sup>TH</sup>                           |

SUBJECT:- CONTROL SYSTEMS & COMPONENT

## Name of the Faculty- ER. SATYABRATA TRIPATHY

|           |                                         | Topic to be<br>taken |                                                                                                                                                                                                                                                                                                                             |                                |              | Actual topictaken                                                                                                                                                                                                        |                                                                    |         |
|-----------|-----------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------|
| Sl.<br>No | Topic/Module                            | No. of period        | Details of the topics                                                                                                                                                                                                                                                                                                       | Date                           | Topic<br>No. | Topic Name                                                                                                                                                                                                               | Date                                                               | Remarks |
| 1         | FUNDAMENT<br>AL OF<br>CONTROL<br>SYSTEM | 05                   | <ul> <li>1.1 Classification of Control system</li> <li>1.2 Open loop system &amp; Closed loop system and its comparison</li> <li>1.3 Effects of Feed back</li> <li>1.4 Standard test Signals(Step, Ramp, Parabolic, Impulse Functions)</li> <li>1.5 Servomechanism</li> <li>1.6 Regulators ( Regulating systems)</li> </ul> | 13/02/2023<br>TO<br>22/02/2023 | 1.1          | Classification of Control<br>system<br>Open loop system & Closed<br>loop system and its<br>comparison<br>Effects of Feed back<br>Standard test Signals(Step,<br>Ramp, Parabolic, Impulse<br>Functions)<br>Servomechanism | 13/02/2023<br>15/02/2023<br>17/02/2023<br>20/02/2023<br>22/02/2023 |         |
|           |                                         |                      |                                                                                                                                                                                                                                                                                                                             |                                |              | Regulators ( Regulating systems                                                                                                                                                                                          |                                                                    |         |

| 2 | TRANSFER<br>FUNCTIONS |  | <ul> <li>2.1 Transfer Function of a system &amp;<br/>Impulse response,</li> <li>2.2 Properties,Advantages&amp;</li> <li>Disadvantages of Transfer Function</li> <li>2.3 Poles &amp; Zeroes of transfer Function</li> <li>2.4 Representation of poles &amp; Zero on<br/>the s-plane</li> <li>2.5 Simple problems of transfer function<br/>of network</li> </ul> | 24/02/2023<br>TO<br>04/03/2023 | 2.1<br>2.2<br>2.3<br>2.4<br>2.5 | Impulse response, | 24/02/2023<br>25/02/2023<br>27/02/2023<br>01/03/2023<br>03/03/2023<br>04/03/2023 |  |
|---|-----------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------|----------------------------------------------------------------------------------|--|
|---|-----------------------|--|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|-------------------|----------------------------------------------------------------------------------|--|

| 3 CONTROL SYSTEM<br>COMPONENTS &<br>MATHEMATICAL<br>MODELLING OF<br>PHYSICAL SYSTEM | 05 | <ul> <li>3.1 Components of Control System</li> <li>3.2 Potentiometer, Synchros, Diode<br/>modulator &amp; demodulator ,</li> <li>3.3 DC motors, AC Servomotors</li> <li>3.4 Modelling of Electrical Systems(R, L,<br/>C, Analogous systems)</li> </ul>                                                                                                                                                                                                                                                                             | 06/03/2023<br>TO<br>15/03/2023 | 3.1<br>3.2<br>3.3<br>3.4                                    | Components of Control System<br>Potentiometer, Synchros, Diode<br>modulator & demodulator,<br>DC motors, AC Servomotors<br>Modelling of Electrical<br>Systems(R, L, C, Analogous<br>systems)                                                                                                                                                                                                                                                                                                  | 06/03/2023<br>10/03/2023<br>11/03/2023<br>13/03/2023<br>14/03/2023<br>15/03/2023 |
|-------------------------------------------------------------------------------------|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
| 4 BLOCK<br>DIAGRAM &<br>SIGNAL FLOW<br>GRAPHS(SFG)                                  | 08 | <ul> <li>4.1 Definition of Basic Elements of a<br/>Block Diagram</li> <li>4.2 Canonical Form of Closed loop<br/>Systems</li> <li>4.3 Rules for Block diagram Reduction</li> <li>4.4 Procedure for of Reduction of<br/>Block Diagram</li> <li>4.5 Simple Problem for equivalent<br/>transfer function</li> <li>4.6 Basic Definition in SFG &amp;<br/>properties</li> <li>4.7 Mason's Gain formula</li> <li>4.8 Steps foe solving Signal flow<br/>Graph</li> <li>4.9 Simple problems in Signal flow<br/>graph for network</li> </ul> | 16/03/2023<br>TO<br>25/03/2023 | 4.1<br>4.2<br>4.3<br>4.4<br>4.5<br>4.6<br>4.7<br>4.8<br>4.9 | <ul> <li>Definition of Basic Elements of<br/>a Block Diagram</li> <li>Canonical Form of Closed<br/>loop Systems</li> <li>Rules for Block diagram<br/>Reduction</li> <li>Procedure for of Reduction of<br/>Block Diagram</li> <li>Simple Problem for equivalent<br/>transfer function</li> <li>Basic Definition in SFG &amp;<br/>properties</li> <li>Mason's Gain formula<br/>Steps foe solving Signal flow<br/>Graph</li> <li>Simple problems in Signal flow<br/>graph for network</li> </ul> | 06/03/2023<br>17/03/2023<br>20/03/2023<br>22/03/2023<br>24/03/2023<br>25/03/2023 |

| 5 | TIME DOMAIN<br>ANALYSIS OF<br>CONTROL SYSTEMS     | 08 | <ul> <li>5.1 Definition of Time, Stability, steady-<br/>state response, accuracy, transient<br/>accuracy, In-sensitivity and robustness.</li> <li>5.2 System Time Response</li> <li>5.3 Analysis of Steady State Error</li> <li>5.4 Types of Input &amp; Steady state<br/>Error(Step ,Ramp, Parabolic)</li> <li>5.5 Parameters of first order system &amp;<br/>second-order systems</li> <li>5.6 Derivation of time response<br/>Specification (Delay time, Rise time,<br/>Peak time,Setting time,Peak over shoot)</li> </ul> | 27/03/2023<br>TO<br>08/04/2023 | 5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6 | transient accuracy, In-sensitivity<br>and robustness.<br>System Time Response<br>Analysis of Steady State Error<br>Types of Input & Steady state<br>Error(Step ,Ramp, Parabolic)<br>Parameters of first order<br>system & second-order systems<br>Derivation of time response<br>Specification (Delay time, Rise<br>time, Peak time,Setting<br>time,Peak over shoot) | 27/03/2023<br>29/03/2023<br>31/03/2023<br>03/04/2023<br>05/04/2023<br>06/04/2023<br>08/04/2023               |  |
|---|---------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| 6 | FEEDBACKCHARAC<br>TERISTICS OF<br>CONTROL SYSTEMS | 06 | <ul> <li>6.1 Effect of parameter variation in Open<br/>loop System &amp; Closed loop Systems</li> <li>6.2 Introduction to Basic control Action&amp;<br/>Basic modes of feedback control:<br/>proportional, integral and derivative</li> </ul>                                                                                                                                                                                                                                                                                 | 10/04/2023<br>TO<br>25/04/2023 | 6.1<br>6.2<br>6.3<br>6.4               | Effect of parameter variation in<br>Open loop System & Closed loop<br>Systems<br>Introduction to Basic control<br>Action& Basic modes of feedback<br>control: proportional, integral and                                                                                                                                                                             | 10/04/2023<br>12/04/2023<br>15/04/2023<br>17/04/2023<br>19/04/2023<br>21/04/2023<br>24/04/2023<br>25/04/2023 |  |

|                                                 |    | <ul> <li>6.3 Effect of feedback on overall gain,</li> <li>Stability</li> <li>6.4 Realisation of Controllers( P,</li> <li>PI,PD,PID) with OPAMP</li> </ul>                                                                                                                                                                                                                                                                           |                                |                                 | derivative<br>Effect of feedback on overall<br>gain, Stability<br>Realisation of Controllers( P,<br>PI,PD,PID) with OPAMP |                                                                                                              |  |
|-------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--|
| STABILITY<br>CONCEPT, & ROOT<br>LOCUS METHOD    | 08 | <ul> <li>7.1 Effect of location of poles on stability</li> <li>7.2 RouthHurwitz stability criterion.</li> <li>7.3 Steps for Root locus method</li> <li>7.4 Root locus method of design(Simple problem)</li> </ul>                                                                                                                                                                                                                   | 26/04/2023<br>TO<br>01/05/2023 |                                 | stability<br>RouthHurwitz stability criterion.                                                                            | 26/04/2023<br>26/04/2023<br>27/04/2023<br>28/04/2023<br>29/04/2023<br>01/05/2023                             |  |
| FREQUENCY-<br>RESPONSE<br>ANALYSIS&BODE<br>PLOT |    | <ul> <li>8.1 Frequencyresponse, Relationship<br/>between time &amp; frequency response</li> <li>8.2 Methods of Frequency response</li> <li>8.3 Polar plots &amp; steps for polar plot</li> <li>8.4 Bodes plot &amp; steps for Bode plots</li> <li>8.5 Stability in frequency domain, Gain<br/>Margin&amp; Phase margin</li> <li>8.6 Nyquist plots. Nyquiststability<br/>criterion.</li> <li>8.7 Simple problems as above</li> </ul> | 03/05/2023<br>TO<br>13/05/2023 | 8.3<br>8.4<br>8.5<br>8.6<br>8.7 | between time & frequency response                                                                                         | 03/05/2023<br>06/05/2023<br>08/05/2023<br>09/05/2023<br>10/05/2023<br>11/05/2023<br>12/05/2023<br>13/05/2023 |  |

| 9 | STATE VARIABLE | 05 | 9.1 Concepts of state, state variable, state | 15/05/2023 | 9.1 | , , , ,                           | 15/05/2023 |  |
|---|----------------|----|----------------------------------------------|------------|-----|-----------------------------------|------------|--|
|   | ANALYSIS       |    | model,                                       | то         |     |                                   | 16/05/2023 |  |
|   |                |    |                                              | 23/05/2023 |     |                                   | 17/05/2023 |  |
|   |                |    |                                              |            |     |                                   | 18/05/2023 |  |
|   |                |    |                                              |            |     | continuous time functions(Simple) | 20/05/2023 |  |
|   |                |    | 9.2 state models for linear continuous       |            |     |                                   | 22/05/2023 |  |
|   |                |    | time functions(Simple)                       |            |     |                                   | 23/05/2023 |  |
|   |                |    |                                              |            |     |                                   |            |  |
|   |                |    |                                              |            |     |                                   |            |  |
|   |                |    |                                              |            |     |                                   |            |  |
|   |                |    |                                              |            |     |                                   |            |  |

Prov

HOD