5TH SEMESTER, BRANCH-MECHANICAL(GROUP 1) # **REFRIGERATION AND AIR CONDITIONING(TH-5)** | Name of the Fac | culty – ER. | DATI JAYARAM | | | | | |-----------------------------------|---|---|------------------------------|---|---|---------| | | | Topics to be taken | Actually take | en | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | Details of the topics | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | 1. AIR
REFRIGERATION
CYCLE. | 5 | 1.1 Definition of refrigeration and unit of refrigeration 1.2 Definition of COP, Refrigerating effect (R.E) 1.3 Principle of working of open and closed air system of refrigeration. 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it | 1.08.2023
TO
8.08.2023 | 1.1 Definition of refrigeration and unit of refrigeration 1.2 Definition of COP, Refrigerating effect (R.E) 1.3 Principle of working of open and closed air system of refrigeration. 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it | 1.08.2023
2.08.2023
4.08.2023
5.08.2023
8.08.2023 | | | 2. SIMPLE VAPOUR
COMPRESSION
REFRIGERATION
SYSTEM | 10 | 2.1 schematic diagram of simple vapors compression refrigeration system' 2.2 Types 2.2.1 Cycle with dry saturated vapors after compression. 2.2.2 Cycle with wet vapors after compression. 2.2.3 Cycle with superheated vapors after compression. 2.2.4 Cycle with superheated vapors before compression. 2.2.5 Cycle with sub cooling of refrigerant 2.2.6 Representation of above cycle on temperature entropy and pressure enthalpy diagram 2.2.7 Numerical on above (determination of COP, mass flow) | 9.08.2023
TO
26.08.2023 | 2.1 schematic diagram of simple vapors compression refrigeration system' 2.2 Types 2.2.1 Cycle with dry saturated vapors after compression. 2.2.2 Cycle with wet vapors after compression. 2.2.3 Cycle with superheated vapors after compression. 2.2.4 Cycle with superheated vapors before compression. 2.2.5 Cycle with superheated vapors before compression. 2.2.6 Representation of above cycle on temperature entropy and pressure enthalpy diagram 2.2.7 Numerical on above (determination of COP, mass flow) | 9.08.2023
11.08.2023
12.08.2023
16.08.2023
18.08.2023
19.08.2023
22.08.2023
23.08.2023
25.08.2023
26.08.2023 | | |--|----|---|--------------------------------|---|---|--| | 3. VAPOUR
ABSORPTION
REFRIGERATION
SYSTEM | 7 | 3.1 Simple vapor absorption refrigeration system 3.2 Practical vapor absorption refrigeration system 3.3 COP of an ideal vapor absorption refrigeration system 3.4.Numerical on COP. | 29.08.2023
TO
12.09.2023 | 3.1 Simple vapor absorption refrigeration system 3.2 Practical vapor absorption refrigeration system 3.3 COP of an ideal vapor absorption refrigeration system 3.4.Numerical on COP. | 29.08.2023
1.09.2023
2.09.2023
4.09.2023
8.09.2023
9.09.2023
12.09.2023 | | | 4. REFRIGERATION EQUIPMENTS | 8 | 4.1 REFRIGERANT COMPRESSORS 4.1.1 Principle of working and constructional details of reciprocating and rotary compressors. 4.1.2 Centrifugal compressor only theory 4.1.3 Important terms. 4.1.4 Hermetically and semi hermetically sealed compressor. 4.2 CONDENSERS 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser 4.2.2 Heat rejection ratio. 4.2.3 Cooling tower and spray pond. 4.3 EVAPORATORS 1.6.1 Principle of working and constructional details of an evaporator. 1.6.2 Types of evaporator. 1.6.3 Bare tube coil evaporator, finned evaporator, shell and tube evaporator. | 13.09.2023
TO
27.09.2023 | 4.1 REFRIGERANT COMPRESSORS 4.1.1 Principle of working and constructional details of reciprocating and rotary compressors. 4.1.2 Centrifugal compressor only theory 4.1.3 Important terms. 4.1.4 Hermetically and semi hermetically sealed compressor. 4.2 CONDENSERS 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser 4.2.2 Heat rejection ratio. 4.2.3 Cooling tower and spray pond. 4.3 EVAPORATORS 1.6.1 Principle of working and constructional details of an evaporator. 1.6.2 Types of evaporator. 1.6.3 Bare tube coil evaporator, finned evaporator, shell and tube evaporator. | 13.09.2023
15.09.2023
16.09.2023
20.09.2023
22.09.2023
23.09.2023
27.09.2023 | | |-----------------------------|---|--|--------------------------------|--|--|--| |-----------------------------|---|--|--------------------------------|--|--|--| | 5. REFRIGERANT
FLOW CONTROLS,
REFRIGERANTS &
APPLICATION OF
REFRIGERANTS | 10 | 5.1 EXPANSION VALVES 5.1.1 Capillary tube 5.1.2 Automatic expansion valve 5.1.3 Thermostatic expansion valve 5.2 REFRIGERANTS 5.2.1 Classification of refrigerants 5.2.2 Desirable properties of an ideal refrigerant. 5.2.3 Designation of refrigerant. 5.2.4 Thermodynamic Properties of Refrigerants. 5.2.5 Chemical properties of refrigerants. 5.2.6 commonly used refrigerants, R-11, R-12, R-22, R-134a, R-717 5.2.7 Substitute for CFC 5.3 Applications of refrigeration 5.3.1 cold storage 5.3.2 dairy refrigeration 5.3.3 ice plant 5.3.4 water cooler 5.3.5 frost free refrigerator | 29.09.2023
TO
17.10.2023 | 5.1 EXPANSION VALVES 5.1.1 Capillary tube 5.1.2 Automatic expansion valve 5.1.3 Thermostatic expansion valve 5.2 REFRIGERANTS 5.2.1 Classification of refrigerants 5.2.2 Desirable properties of an ideal refrigerant. 5.2.3 Designation of refrigerant. 5.2.4 Thermodynamic Properties of Refrigerants. 5.2.5 Chemical properties of refrigerants. 5.2.6 commonly used refrigerants, R- 11, R-12, R-22, R-134a, R-717 5.2.7 Substitute for CFC 5.3 Applications of refrigeration 5.3.1 cold storage 5.3.2 dairy refrigeration 5.3.3 ice plant 5.3.4 water cooler 5.3.5 frost free refrigerator | 29.09.2023
30.09.2023
4.10.2023
6.10.2023
7.10.2023
11.10.2023
13.10.2023
17.10.2023 | | |--|----|--|--------------------------------|---|---|--| |--|----|--|--------------------------------|---|---|--| | 6. PSYCHOMETRICS
&COMFORT AIR
CONDITIONING
SYSTEMS | 10 | 6.1 Psychometric terms 6.2 Adiabatic saturation of air by evaporation of water 6.3 Psychometric chart and uses. 6.4 Psychometric processes 6.4.1 Sensible heating and Cooling 6.4.2 Cooling and Dehumidification 6.4.3 Heating and Humidification 6.4.4 Adiabatic cooling with humidification 6.4.5 Total heating of a cooling process 6.4.6 SHF, BPF, 6.4.7 Adiabatic mixing 6.4.8 Problems on above. 6.5 Effective temperature and | 18.10.2023
TO
11.11.2023 | 6.1 Psychometric terms 6.2 Adiabatic saturation of air by evaporation of water 6.3 Psychometric chart and uses. 6.4 Psychometric processes 6.4.1 Sensible heating and Cooling 6.4.2 Cooling and Dehumidification 6.4.3 Heating and Humidification 6.4.4 Adiabatic cooling with humidification 6.4.5 Total heating of a cooling process 6.4.6 SHF, BPF, 6.4.7 Adiabatic mixing 6.4.8 Problems on above. 6.5 Effective temperature and | 18.10.2023
31.10.2023
1.11.2023
2.11.2023
3.11.2023
4.11.2023
7.11.2023
10.11.2023 | | |---|----|--|--------------------------------|--|---|--| | | | 6.5 Effective temperature and Comfort chart | | 6.5 Effective temperature and Comfort chart | 11.11.2023 | | | 7. AIR
CONDITIONING
SYSTEMS | 10 | 7.1 Factors affecting comfort air conditioning. 7.2 Equipment used in an airconditioning. 7.3 Classification of air-conditioning system 7.4 Winter Air Conditioning System 7.5 Summer air-conditioning system. 7.6 Numerical on above | 15.11.2023
TO
1.12.2023 | 7.1 Factors affecting comfort air conditioning 7.2 Equipment used in an air-conditioning. 7.3 Classification of air-conditioning system 7.4 Winter Air Conditioning System 7.5 Summer air-conditioning system. 7.6 Numerical on above | 15.11.2023
17.11.2023
18.11.2023
21.11.2023
22.11.2023
24.11.2023
25.11.2023
29.11.2023
1.12.2023
2.12.2023
6.12.2023
8.12.2023 | | |-----------------------------------|----|--|-------------------------------|---|--|--| |-----------------------------------|----|--|-------------------------------|---|--|--| **CLASS COVERED BY** - H.O.D Mechanical Engineering Speakli School of Engg. HOD, MECHANICAL ## GANDHI SCHOOL OF ENGINEERING BHABANDHA, BERHAMPUR SESSION PLAN ## 5TH SEMESTER, BRANCH-MECHANICAL(GROUP 2) # **REFRIGERATION AND AIR CONDITIONING(TH-5)** | Name of the Faculty – ER. DATI JAYARAM | | | | | | | | | | |--|---|---|------------------------------|---|---|---------|--|--|--| | | | Topics to be taken | Actually take | en | | | | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | | | | 1. AIR
REFRIGERATION
CYCLE. | 5 | 1.1 Definition of refrigeration and unit of refrigeration 1.2 Definition of COP, Refrigerating effect (R.E) 1.3 Principle of working of open and closed air system of refrigeration. 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it | 1.08.2023
TO
8.08.2023 | 1.1 Definition of refrigeration and unit of refrigeration 1.2 Definition of COP, Refrigerating effect (R.E) 1.3 Principle of working of open and closed air system of refrigeration. 1.3.1 Calculation of COP of Bell-Coleman cycle and numerical on it | 1.08.2023
3.08.2023
4.08.2023
7.08.2023
8.08.2023 | | | | | | 2. SIMPLE VAPOUR
COMPRESSION
REFRIGERATION
SYSTEM | 10 | 2.1 schematic diagram of simple vapors compression refrigeration system' 2.2 Types 2.2.1 Cycle with dry saturated vapors after compression. 2.2.2 Cycle with wet vapors after compression. 2.2.3 Cycle with superheated vapors after compression. 2.2.4 Cycle with superheated vapors before compression. 2.2.5 Cycle with sub cooling of refrigerant 2.2.6 Representation of above cycle on temperature entropy and pressure enthalpy diagram 2.2.7 Numerical on above (determination of COP,mass flow) | 10.08.2023
TO
28.08.2023 | 2.1 schematic diagram of simple vapors compression refrigeration system' 2.2 Types 2.2.1 Cycle with dry saturated vapors after compression. 2.2.2 Cycle with wet vapors after compression. 2.2.3 Cycle with superheated vapors after compression. 2.2.4 Cycle with superheated vapors before compression. 2.2.5 Cycle with superheated vapors before compression. 2.2.6 Representation of above cycle on temperature entropy and pressure enthalpy diagram 2.2.7 Numerical on above (determination of COP, mass flow) | 10.08.2023
11.08.2023
14.08.2023
17.08.2023
18.08.2023
21.08.2023
22.08.2023
24.08.2023
25.08.2023
28.08.2023 | | |--|----|--|--------------------------------|---|--|--| | 3. VAPOUR
ABSORPTION
REFRIGERATION
SYSTEM | 7 | 3.1 Simple vapor absorption refrigeration system 3.2 Practical vapor absorption refrigeration system 3.3 COP of an ideal vapor absorption refrigeration system 3.4.Numerical on COP. | 29.08.2023
TO
11.09.2023 | 3.1 Simple vapor absorption refrigeration system3.2 Practical vapor absorption refrigeration system3.3 COP of an ideal vapor absorption refrigeration system3.4.Numerical on COP. | 29.08.2023
31.08.2023
1.09.2023
4.09.2023
7.09.2023
8.09.2023
11.09.2023 | | | 4. REFRIGERATION EQUIPMENTS | 8 | 4.1 REFRIGERANT COMPRESSORS 4.1.1 Principle of working and constructional details of reciprocating and rotary compressors. 4.1.2 Centrifugal compressor only theory 4.1.3 Important terms. 4.1.4 Hermetically and semi hermetically sealed compressor. 4.2 CONDENSERS 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser 4.2.2 Heat rejection ratio. 4.2.3 Cooling tower and spray pond. 4.3 EVAPORATORS 1.6.1 Principle of working and constructional details of an evaporator. 1.6.2 Types of evaporator. 1.6.3 Bare tube coil evaporator, finned evaporator, shell and tube evaporator. | 12.09.2023
TO
26.09.2023 | 4.1 REFRIGERANT COMPRESSORS 4.1.1 Principle of working and constructional details of reciprocating and rotary compressors. 4.1.2 Centrifugal compressor only theory 4.1.3 Important terms. 4.1.4 Hermetically and semi hermetically sealed compressor. 4.2 CONDENSERS 4.2.1 Principle of working and constructional details of air cooled and water cooled condenser 4.2.2 Heat rejection ratio. 4.2.3 Cooling tower and spray pond. 4.3 EVAPORATORS 1.6.1 Principle of working and constructional details of an evaporator. 1.6.2 Types of evaporator. 1.6.3 Bare tube coil evaporator, finned evaporator, shell and tube evaporator. | 12.09.2023
14.09.2023
15.09.2023
21.09.2023
22.09.2023
25.09.2023
26.09.2023 | | |-----------------------------|---|--|--------------------------------|--|--|--| |-----------------------------|---|--|--------------------------------|--|--|--| | 5. REFRIGERANT
FLOW CONTROLS,
REFRIGERANTS &
APPLICATION OF
REFRIGERANTS | 10 | 5.1 EXPANSION VALVES 5.1.1 Capillary tube 5.1.2 Automatic expansion valve 5.1.3 Thermostatic expansion valve 5.2 REFRIGERANTS 5.2.1 Classification of refrigerants 5.2.2 Desirable properties of an ideal refrigerant. 5.2.3 Designation of refrigerant. 5.2.4 Thermodynamic Properties of Refrigerants. 5.2.5 Chemical properties of refrigerants. 5.2.6 commonly used refrigerants, R-11, R-12, R-22, R-134a, R-717 5.2.7 Substitute for CFC 5.3 Applications of refrigeration 5.3.1 cold storage 5.3.2 dairy refrigeration 5.3.3 ice plant 5.3.4 water cooler 5.3.5 frost free refrigerator | 29.09.2023
TO
17.10.2023 | 5.1 EXPANSION VALVES 5.1.1 Capillary tube 5.1.2 Automatic expansion valve 5.1.3 Thermostatic expansion valve 5.2 REFRIGERANTS 5.2.1 Classification of refrigerants 5.2.2 Desirable properties of an ideal refrigerant. 5.2.3 Designation of refrigerant. 5.2.4 Thermodynamic Properties of Refrigerants. 5.2.5 Chemical properties of refrigerants. 5.2.6 commonly used refrigerants, R-11, R-12, R-22, R-134a, R-717 5.2.7 Substitute for CFC 5.3 Applications of refrigeration 5.3.1 cold storage 5.3.2 dairy refrigeration 5.3.3 ice plant 5.3.4 water cooler 5.3.5 frost free refrigerator | 29.09.2023
3.10.2023
6.10.2023
9.10.2023
10.10.2023
13.10.2023
16.10.2023
17.10.2023 | | |--|----|--|--------------------------------|--|---|--| |--|----|--|--------------------------------|--|---|--| | 6. PSYCHOMETRICS
&COMFORT AIR
CONDITIONING
SYSTEMS | 10 | 6.1 Psychometric terms 6.2 Adiabatic saturation of air by evaporation of water 6.3 Psychometric chart and uses. 6.4 Psychometric processes 6.4.1 Sensible heating and Cooling 6.4.2 Cooling and Dehumidification 6.4.3 Heating and Humidification 6.4.4 Adiabatic cooling with humidification 6.4.5 Total heating of a cooling process 6.4.6 SHF, BPF, 6.4.7 Adiabatic mixing 6.4.8 Problems on above. 6.5 Effective temperature and Comfort chart | 19.10.2023
TO
17.11.2023 | 6.1 Psychometric terms 6.2 Adiabatic saturation of air by evaporation of water 6.3 Psychometric chart and uses. 6.4 Psychometric processes 6.4.1 Sensible heating and Cooling 6.4.2 Cooling and Dehumidification 6.4.3 Heating and Humidification 6.4.4 Adiabatic cooling with humidification 6.4.5 Total heating of a cooling process 6.4.6 SHF, BPF, 6.4.7 Adiabatic mixing 6.4.8 Problems on above. 6.5 Effective temperature and Comfort chart | 19.10.2023
31.10.2023
2.11.2023
3.11.2023
7.11.2023
9.11.2023
10.11.2023
16.11.2023 | | |---|----|--|--------------------------------|--|--|--| |---|----|--|--------------------------------|--|--|--| | 7. AIR
CONDITIONING
SYSTEMS | 10 | 7.1 Factors affecting comfort air conditioning. 7.2 Equipment used in an airconditioning. 7.3 Classification of air-conditioning system 7.4 Winter Air Conditioning System 7.5 Summer air-conditioning system. 7.6 Numerical on above | 20.11.2023
TO
8.12.2023 | 7.1 Factors affecting comfort air conditioning. 7.2 Equipment used in an air-conditioning. 7.3 Classification of air-conditioning system 7.4 Winter Air Conditioning System 7.5 Summer air-conditioning system. 7.6 Numerical on above | 20.11.2023
21.11.2023
23.11.2023
24.11.2023
28.11.2023
30.11.2023
1.12.2023
4.12.2023
7.12.2023
8.12.2023 | | |-----------------------------------|----|--|-------------------------------|---|--|--| |-----------------------------------|----|--|-------------------------------|---|--|--| **CLASS COVERED BY** - H.O.D Mechanical Engineering Speakli School of Engg. HOD, MECHANICAL