GANDHI SCHOOL OF ENGINEERING BHABANDHA, BERHAMPUR SESSION PLAN # 3RD SEMESTER, BRANCH-MECHANICAL(GROUP 1) ### **STRENGTH OF MATERIAL(TH-2)** | Name of the Faculty –ER. SANJAY KUMAR PANIGRAHY | | | | | | | | | |---|---|--|-------------------------------|--|--|---------|--|--| | Topics to be taken | | | Actually taken | | | | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | Details of the topics | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | | | 1. Simple stress&
strain | 10 | 1.1 Types of load, stresses & strains, (Axial and tangential) Hookes law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants, 1.2 Principle of super position, stresses in composite section 1.3 Temperature stress, determine the temperature stress in composite bar (single core) 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load 1.5 Simple problems on above. | 1/08/2023
TO
18/08/2023 | 1.1 Types of load, stresses & strains, (Axial and tangential) Hookes law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants, 1.2 Principle of super position, stresses in composite section 1.3 Temperature stress, determine the temperature stress in composite bar (single core) 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load 1.5 Simple problems on above. | 1/08/2023
2/08/2023
4/08/2023
5/08/2023
8/08/2023
9/08/2023
11/08/2023
12/08/2023
18/08/2023 | | | | | 2. Thin cylinder
and spherical shell
under internal
pressure | 8 | 2.1 Definition of hoop and longitudinal stress, strain 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 2.3 Computation of the change in length, diameter and volume 2.4 Simple problems on above | 19/08/2023
TO
2/09/2023 | 2.1 Definition of hoop and longitudinal stress, strain 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 2.3 Computation of the change in length, diameter and volume 2.4 Simple problems on above | 19/08/2023
22/08/2023
23/08/2023
25/08/2023
26/08/2023
29/08/2023
1/09/2023
2/09/2023 | |---|----|---|-------------------------------|---|--| | 3. Two
dimensional stress
systems | 10 | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane 3.2 Location of principal plane and computation of principal stress 3.3 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle | 8/09/2023
TO
26/09/2023 | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane 3.2 Location of principal plane and computation of principal stress 3.3 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle | 8/09/2023
9/09/2023
12/09/2023
13/09/2023
15/09/2023
16/09/2023
20/09/2023
22/09/2023
23/09/2023
26/09/2023 | | 4. Bending
moment& shear
force | 10 | 4.1 Types of beam and load 4.2 Concepts of Shear force and bending moment 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load | то | 4.1 Types of beam and load 4.2 Concepts of Shear force and bending moment 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load | 27/09/2023
29/09/2023
30/09/2023
3/10/2023
4/10/2023
6/10/2023
7/10/2023
10/10/2023
11/10/2023
13/10/2023 | | |--------------------------------------|----|--|----|--|--|--| | 5. Theory of simple
bending | 10 | 5.1 Assumptions in the theory of bending,5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.5.3 solve simple problems | TO | 5.1 Assumptions in the theory of bending, 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. 5.3 solve simple problems | 17/10/2023
18/10/2023
31/10/2023
1/11/2023
2/11/2023
3/11/2023
4/11/2023
7/11/2023
8/11/2023
10/11/2023 | | | 6. Combined direct
& Bending stresses | 6 | 6.1 Define column 6.2 Axial load, Eccentric load on column, 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. 6.4 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions | то | 6.1 Define column 6.2 Axial load, Eccentric load on column, 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. 6.4 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions | 11/11/2023
15/11/2023
17/11/2023
18/11/2023
21/11/2023
22/11/2023 | | |--|---|---|-------------------------------|---|--|--| | 7. Torsion | 6 | 7.1 Assumption of pure torsion 7.2 The torsion equation for solid and hollow circular shaft 7.3 Comparison between solid and hollow shaft subjected to pure torsion | 24/11/2023
TO
6/12/2023 | 7.1 Assumption of pure torsion 7.2 The torsion equation for solid and hollow circular shaft 7.3 Comparison between solid and hollow shaft subjected to pure torsion REVISION- | 24/11/2023
25/11/2023
28/11/2023
29/11/2023
1/12/2023
2/12/2023
6/12/2023
8/12/2023 | | S.K. panigraly CLASS COVERED BY H.O.D Mechanical Engineering Bendhi School of Engg. HOD, MECHANICAL #### GANDHI SCHOOL OF ENGINEERING BHABANDHA, BERHAMPUR SESSION PLAN ## **3RD SEMESTER, BRANCH-MECHANICAL(GROUP 2)** ## **STRENGTH OF MATERIAL(TH-2)** | Name of the Faculty –PROF. SUNIL KUMAR SABAT | | | | | | | | | |--|---|--|-------------------------------|--|---|---------|--|--| | Topics to be taken | | | Actually taken | | | | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | Details of the topics | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | | | 1. Simple stress&
strain | 10 | 1.1 Types of load, stresses & strains, (Axial and tangential) Hookes law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants, 1.2 Principle of super position, stresses in composite section 1.3 Temperature stress, determine the temperature stress in composite bar (single core) 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load 1.5 Simple problems on above. | 2/08/2023
TO
17/08/2023 | 1.1 Types of load, stresses & strains, (Axial and tangential) Hookes law, Young's modulus, bulk modulus, modulus of rigidity, Poisson's ratio, derive the relation between three elastic constants, 1.2 Principle of super position, stresses in composite section 1.3 Temperature stress, determine the temperature stress in composite bar (single core) 1.4 Strain energy and resilience, Stress due to gradually applied, suddenly applied and impact load 1.5 Simple problems on above. | 2/08/2023
3/08/2023
4/08/2023
7/08/2023
9/08/2023
10/08/2023
14/08/2023
16/08/2023
17/08/2023 | | | | | 2. Thin cylinder
and spherical shell
under internal
pressure | 8 | 2.1 Definition of hoop and longitudinal stress, strain 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 2.3 Computation of the change in length, diameter and volume 2.4 Simple problems on above | 18/08/2023
TO
1/09/2023 | 2.1 Definition of hoop and longitudinal stress, strain 2.2 Derivation of hoop stress, longitudinal stress, hoop strain, longitudinal strain and volumetric strain 2.3 Computation of the change in length, diameter and volume 2.4 Simple problems on above | 18/08/2023
21/08/2023
23/08/2023
24/08/2023
25/08/2023
28/08/2023
31/08/2023
1/09/2023 | | |---|----|---|-------------------------------|---|---|--| | 3. Two
dimensional stress
systems | 10 | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane 3.2 Location of principal plane and computation of principal stress 3.3 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle | 4/09/2023
TO
22/09/2023 | 3.1 Determination of normal stress, shear stress and resultant stress on oblique plane 3.2 Location of principal plane and computation of principal stress 3.3 Location of principal plane and computation of principal stress and maximum shear stress using Mohr's circle | 4/09/2023
7/09/2023
8/09/2023
11/09/2023
13/09/2023
14/09/2023
15/09/2023
21/09/2023
22/09/2023 | | | 4. Bending
moment& shear
force | 10 | 4.1 Types of beam and load 4.2 Concepts of Shear force and bending moment 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load | то | 4.1 Types of beam and load 4.2 Concepts of Shear force and bending moment 4.3 Shear Force and Bending moment diagram and its salient features illustration in cantilever beam, simply supported beam and over hanging beam under point load and uniformly distributed load | 25/09/2023
27/09/2023
29/09/2023
4/10/2023
5/10/2023
6/10/2023
9/10/2023
11/10/2023
12/10/2023 | | |--------------------------------------|----|--|--------------------------------|--|--|--| | 5. Theory of simple
bending | 10 | 5.1 Assumptions in the theory of bending, 5.2 Bending equation, Moment of resistance, Section modulus& neutral axis. 5.3 solve simple problems | 16/10/2023
TO
10/11/2023 | 5.1 Assumptions in the theory of bending,5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.5.3 solve simple problems | 16/10/2023
18/10/2023
19/10/2023
1/11/2023
2/11/2023
3/11/2023
6/11/2023
8/11/2023
9/11/2023
10/11/2023 | | | 6. Combined direct
& Bending stresses | 6 | 6.1 Define column 6.2 Axial load, Eccentric load on column, 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. 6.4 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions | то | 6.1 Define column 6.2 Axial load, Eccentric load on column, 6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses. Numerical problems on above. 6.4 Buckling load computation using Euler's formula (no derivation) in columns with various end conditions | 15/11/2023
16/11/2023
17/11/2023
20/11/2023
22/11/2023
23/11/2023 | | |--|----------|---|-------------------------------|---|--|--| | 7. Torsion | 6 | 7.1 Assumption of pure torsion 7.2 The torsion equation for solid and hollow circular shaft 7.3 Comparison between solid and hollow shaft subjected to pure torsion | 24/11/2023
TO
7/12/2023 | 7.1 Assumption of pure torsion 7.2 The torsion equation for solid and hollow circular shaft 7.3 Comparison between solid and hollow shaft subjected to pure torsion REVISION- | 24/11/2023
29/11/2023
30/11/2023
1/12/2023
4/12/2023
6/12/2023
7/12/2023 | | S.K. Sabat **CLASS COVERED BY** Mechanical Engineering Sendhi School of Engg. HOD, MECHANICAL