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SYLLABUS

1.0_Simple stress& strain

1.1 Types of load, stresses & strains,(Axial and tangential) Hooke’s
law, Young’s modulus, bulk modulus, modulus of rigidity,

Poisson’s ratio, derive the relation between three elastic

constants,

1.2 Principle of super position, stresses in composite section

1.3 Temperature stress, determine the temperature stress in
composite bar (single core)

1.4 Strain energy and resilience, Stress due to gradually applied,
suddenly applied and impact load

1.5 Simple problems on above.

2.0_Thin cylinder and spherical shell under internal pressure

2.1 Definition of hoop and longitudinal stress, strain

2.2 Derivation of hoop stress, longitudinal stress, hoop strain,
longitudinal strain and volumetric strain

2.3 Computation of the change in length, diameter and volume

2.4 Simple problems on above

3.0_Two dimensional stress systems

3.1 Determination of normal stress, shear stress and resultant stress on
oblique plane

3.2 Location of principal plane and computation of principal stress

3.3 Location of principal plane and computation of principal stress and
Maximum shear stress using Mohr’s circle

4.0 Bending moment& shear force

4.1 Types of beam and load

4.2 Concepts of Shear force and bending moment

4.3 Shear Force and Bending moment diagram and its salient features
illustration in cantilever beam, simply supported beam and over
hanging beam under point load and uniformly distributed load

5.0 _Theory of simple bending

5.1 Assumptions in the theory of bending,

5.2 Bending equation, Moment of resistance, Section modulus& neutral axis.
5.3 Solve simple problems.

6.0_Combined direct & bending stresses

6.1 Define column

6.2 Axial load, Eccentric load on column

6.3 Direct stresses, Bending stresses, Maximum& Minimum stresses.
Numerical problems on above.

6.4 Buckling load computation using Euler’s formula (no derivation) in
Columns with various end conditions

7.0 Torsion

7.0 Assumption of pure torsion

7.1 The torsion equation for solid and hollow circular shaft

7.2 Comparison between solid and hollow shaft subjected to pure torsion
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CHAPTER 1.0
SIMPLE STRESS AND STRAIN

Load is an external force. Hydraulic force, steam pressure, tensile force, compressive force,
shear force, spring force and different types of load. Again load may be classified as live load, dead
load.

Definition

Strength of material is the study of the behavior of structural and machine members under
the action of externalloads, taking into account the internal forces created and resulting deformation.

Types of load

The simplest type of load (P) is a direct pull or push, known technically as tension or
compression. 1 X

P « I

I > P

X
P — f— P

If a member is in motion the load may be caused partly by dynamic or inertia forces. For
instance, the connecting Rod of a reciprocating engine, load on a fly wheel.

STRESS
Definition
The Force transmitted across any section, divided by the area of that section, is called intensity
of stress or stress. X

- » P

Where
X

o - Stress
P - Load
A - Area

o A - Internal forces of cohesion
Dir r Tensil mpr iv

Stresses which are normal to the plane on which they act are called direct stresses and
either tensile or compressive.
Unit- N/ m2

STRAIN
Stain is a measure of the measure of the deformation produced in the member by the load.

If a rod of length L is in tension and the elongation produced is L, then the direct

. Elongation X
strain= ——————— &="
Original length L

Tensile strain will be positive compressive strain will be negative.
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Hooke’s Law

This states that strain is proportional to the stress producing it.

A material is said to be elastic if all the deformations are proportional to the load.
Principle of superposition

It states that the resultant strain will be the sum of the individual strains caused by each load
acting separately.

Young’s Modules
Within the limits for which Hooke’s law is obeyed, the ratio of the direct stress to the strain

produced is called young’s modules or the modules of Elasticity, i.e. E= 0/8_

For a bar of uniform cross-section A and length L this can be written as
E= PL/AX
OR X= PL/AE

Tangential Str

If the applied load persists of two equal and opposite parallel forces not in the same line, then
there is a tendency for one part of the body to slide over or shear from the other part across any
section LM.

»
>

P

M Area of gross section
is parallel to load

A
Shear stress is tangential to the area over which it acts.

Every shear stress is accompanied by an equal complementary shear stress.

hear Strain

/ !

—

The shear strain or slide is ¢, and can be defined as the change in the right angle. It is
measured in radians.

Modules of rigidity
For elastic material shear strain is proportional to the shear stress.

Modulus of rigidity= shear stress/shear strain
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1.1 Stresses in composite section

Any tensile or compressive member which consists of two or more bars or tubes in parallel,
usually of different materials in called compound bars.

Analysis

A compound bar is made up of a rod of area A, and modules E1 and a tube of equal length of
area A2 and modules E2. If a compressive load P is applied to the compound bar find how the load
is shared. Since the road and tube are of the same initial length and must remain together then the
strain in each part must be the same. The total load carried is P and let if be shared W1 and W2,

€,=€, L1=L2

tibili tion : Wy - W,
compatibility equation : AE, ALE,

Equilibrium equation : W, + W, =P

ALE
Substituting, W, = ﬁx w,

1 1

from ()& (igivenw,(1+ 22E2) _p or
A1E1

PA.,E
TA,E,+A,E,
AZ
T

2

E
A, E,

A+ E,

Example

A composite bar is made up of a brass rod of 25m diameter enclosed in a steel tube, being
co-axial of 40mm external diameters and 30mm internal diameter as shown below. They are securely
fixed at each end. If the stress in brass and steel are not to exceed 70MPa and 120 MPa respectively
find the load (P) the composite bar can safely carry.

P e—|

] 500 mm o

Also find the change in length, if the composite bar is 500mm long. Take E for steel Tube as
200 GPa and brass rod as 80 GPa respectively.

Data Given
Let steel tube denoted as 1 and brass rod denoted as 2
d10=40mm E1=200GPa
d1i = 30mm E2 = 80 GPa

d2 = 25mm
O 1=120 MPa W1 - Load carried by tube

O 2=70 MPa W?2 - Load carried by rod.




From compatibility equation :
W1 _ W‘.2
A1 E1 A2 E2

n,2 2. T 2 02
=T (d? -d? )=—(40°-30
Aq=, () —df =7 )

:>A1 =5(]l2}mm:2

andA,=— 25 2 _491mm?
4
Now putting inequation —(1)
550x 200
W, X——
27 491x80
=W, =2.8W,.

1 2
W1 =0 A1 =120x550=66000N

=>W1=

W, 66000
andW, =§%—= g =2357N
From equlibriumequation
::>P=W1+W2
— 66000+ 2357 =89.57 KW (Ans)
Changeinlength

W (,  66000x500

&, =8L,= = =0.3mm
1727 A E, 550x200x10°

Poisson’s Ratio

The ratio between lateral strain to the liner strain is a constant which is known as poisson’s
ratio.

The symbol is ‘W’
Bulk Modules

When a body is subjected to three mutually perpendicular stresses of equal intensity the
ratio of direct stress to the corresponding volumetric strain is known as bulk modules.

P

i
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P - hydrostatic pressure

(-) - negative sign taking account of the reduction in volume.
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Relation ween K and E
The above figure represents a unit cube of material under the action of a uniform pressure P.

It is clear that the principle stresses are -P, -P and -P and the linear strain in each direction is
-P
-P/E + LLP/E + UPIE = N (1-21)

But we know

Volumetric strain = sum of linear strain

-P

By definationK = ——
y 5V IV

-P

-3P
—(1-2
E ( B
__E
3(1-2p)
or E=3K (1-21)
Relation between E and G

TO

so™

It is necessary first of all to establish the relation between a pure shear and pure normal
stress system at a point in an elastic material.

In the above figure the applied stresses are o tensile onAB and o compressive on BC. If the
stress components on a plane AC at 45° to AB are o g and 7 4 Then the forces acting are as
shown taking the area on AC as units.

Resolving along and at right angle to AC

rﬁ=—°-—8in45+—5—00545 =c

V2 V2

andc ;= ——Cos45—- ——Sin 45 =0

V2 V2

So a pure shear on planes at 45° to AB and BC.




1.2 Temperature stress

Determination of temperature stress in composite bar (single core).

Temperature stresses in Composite Bar

If a compound bar made up of several materials is subjected to a change in temperature
there will be tendency for the components parts to expand different amounts due to the unequal co-
efficient of thermal expansion. If the parts are constrained to remain together then the actual change
in length must be the same for each. This change is the resultant of the effects due to temperature

and stresses condition.
Now let o, = Stress in brass
£ , = Strain in brass
a , = Coefficient of liner expausion for brass
A, = Cross sectional area of brass bar
and 0,, g,, &, A, = Corresponding values for steel.
g = Actual strain of the compaosite bar per unit length.
As compressive load on the brass in equal to the tensile load on the steel, therefore
oA =0, A
straininbrass ¢ ,= a,t-¢

£ = & azAtz

E,+8,= oy Al + o, At, = At(oy-a;),

Thermal stresses in simple bar
Let L = original length of the body

A t = Increase in temperature

o = Coefficient of liner expansion.

We know that the increase in length due to increase of temperature
SL=La At

_ oL LaAt

L
Stressc=tcE

oAt

€

Example -1
An aluminium alloy bar fixed at its both ends is heated through 20K find the stress developed

in the bar. Take modules of elasticity and coefficient of linear expansion for the bar material as 80
GPa and 24 X 10-8/K respectively.

Data Given

At =20K
E = 80GPa = 80 X 10% N/mm?2
o =24 X 10-5/K

Solution
Then the thermal stress

ct=a A1E=24x10 *x20x80x10°
=38.4 N/mm?=38.4mPa
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1.4. Strain energy resilience stress due to gradually applied load, suddenly appliedload
and compact load.

Extension
Strain Energy

The strain energy (U) of the bar is defined as the work done by the load in strain it.
For a gradually applied load or static load the work done is represented by the shaded areain
above figure.

P.X
o

oA

U
U
= 1_02A L
2E
Resilience

L

The strain energy per unit volume usually called as resilience in simple tension or compression
02
is 5=
Proof resilience
It is the value at the elastic limit or at the proof stress for non-ferrous materials.

Strain energy is always a positive quantity and being work units will be expressed as Nm (i.e.
joules)

Im |

Supposing a weight W falls through a height ‘h’ on to ‘a’ collar attached to one end of a
uniform bar, the other end being fined. Then an extension will be caused which is greater than that
due to one application of the same load gradually applied.

Let X is the maximum extension, set up and the corresponding strain is o.
Let P be the equivalent static load which would produce the same extension X.
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Then the strain energy at this instant = E1= %(csT -jo,)

Pd
orEl=——(2-
4t1E( 2

Neglecting loss of energy at compact loss of PE of weight = Gain of strain energy.
w(h+ x):iPx

0rw(h+—) AN
AE 2

RearrangingandmultiplyingthroughAE/L
P?/2-WP-WhAE/L=0
Solvinganddiscarding the negativeroot

P=W+ W +2WGAE/L
~W[1++1+ 2hAE/WL]

Fromwhich)(:%,a:%canbefnund
Whenh=0,P=2W

i.e. the stress produced by a suddenly applied load is twice the static stress. Ex- Referring
figure-1, let a mass of 100Kg falls 4cm on to a collar attached to a bar of 2 cm dia, 3mm long find

max stress, E= 205,000N/mm?

=— —[1+J1+2hAEIW ]

]

100n" 981x3x1000

=134N/mm’

i ﬂ e \j 2x40x7100x205000
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CHAPTER 2.0.
THIN CYLINDER AND SPHERICAL SHELL

UNDER INTERNAL PRESSURE

2.1. Definition of hoop stress

By symmetry the three principal stresses in the shell will be the
(i) circumferential or hoop stress
(ii) longitudinal stress
(iii) radial stress.
Thin cylinder :

If the ratio of thickness to internal diameter is less than about 1/20, then the hoop stress
andlongitudinal stress are constant over the thickness and the radial stress is small and can be

neglected.

2.2 Hoop stress or circumferential stress derivation

Let d - internal diameter

| - length of cylinder

t - thickness

p - pressure

consider the equilibrium of a half cylinder of length L.

section through a diameteral plane, ¢ 1 acts on an area 2tL and the resultant vertical pressure
force is found from the projected area horizontal d x L

Equating forces
oix2xtL=PxdxL
=0 :@
T2t
hoop stress in a tensile stress acts circumferentially on the cylinder.

Londi inal str o, Derivation

) £k

Consider the equilibrium of a section cut by a transverse plane, o.acts on an area n., dt

(d should be the main diameter) and pacts on a projected area of /4 d” equating the forces.
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Equatingthe fonegs ¢

o, xdt=PxZd?
4

Whatever the actual shape of the end

Pd

Le. O, =E

In case of long cylinder or tubes this stress may be neglected.

Thin spherical shell under internal pressure derivation

Again the radial stress will be neglected and the circumferential or hoop stress will be neglected
and by symmetry the two principal stresses are equal, in fact the stress in any tangential direction
isequaltoo .

t

o

d - internal diameter

From above figure it is seen that

T 2
dt=P —d
GT 2
Pd

I.e.0'=—4T

Volumetric strain

Hoop Strain

1
g :E(0'1 —uo,)
Pd
ore, =E(2fp)
Longitudinal Strain

1
82 =E(UZ ﬁ].l(31)
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Volumetric Strain on capacity

The capacity of a cylinder%d’L Ifthe dimension is increased by édandsL, the volumetricstrain

~(d+8d)(L+6L)- oL

) dL

[oPL + %L + 260.dL +25d.d.5L + 8d°L + 8d5Ld%L)
) dL

=(d5L+26d.dL)/d’L
=2.46d/d+8L/L
=2x diameteralstrain+longitudinal strain

=2xhoopstrain+longitudinalstrain

Change in volume = (2€,*§,) volume

For spherical shell, volume strain = 3 x hoop strain

Change in diameter = ¢, .d

Changeinlength = €,. L
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CHAPATER. 3.0
TWO DIMENSION STRESS SYSTEMS

3.1 Determination of normal stress, shear stress and resultant stress on oblique plane.

In many instances, however, both direct and shear stresses are brought into play, and the
resultants stress across any section will be neither normal nor tangential to the plane.

If o, Is the resultants stress making an angle » with the normal to the plane on which of acts.

G
o/ o

Fig 3.1

T
o=tan—
o

2 2
Op =+/07 +1

Stress on obligue plane

Fig 3.3

The problemis to find the stress acting on any plane AC at an angle ¢ to AB. This stress will

not be normal to the plane, and may be resolved into two components o, and 7 .

As per Figure 3.4 show the stresses acting on the three planes of the triangular prism ABC.
There can be no stress on the plane BC, which is a longitudinal plane of the bar, the stress 7, must
be up the plane for equilibrium.

Figure 3.5 shows the forces acting on the prism, taking a thickness t perpendicular the figure.

The equations of equilibrium resolve in the direction of g,
UO.AC.t:cAB.lCUSG
AB
=a,=6(—)Cos0
0=o(35)

=aCos’0
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Resolve in the direction 7,
tﬂ.AC.t=GAB.lSinU

AB, ...
=1,=c(—)Sind

'[B G(AC)
=1y= o Cos®.0Sin6
:tl}:lGSinZU
2

:)U’.=J(U§+Tﬁ)
—04/Cos"8+Cos’0.Sin "0

~.0,=cCosf

It is seen that maximum shear stress is equal to one-half the applied stress and acts on
planes at45°to it.

Pure Shear

As the figures will always be right-angled triangles there will be no loss of generality by
assuming the hypotenuse to be of unit length. By making use of these specification it will be found
that the area on which the stresses act are proportional to 1 (for AC), Sing (for BC) and Sing (for
AB) and future figures will show the forces acting on such an element.

1Coso

Let tue 7 act on a plane AB and there is an equal complementary shear stress on plane BC.
The aim s to find 60 & t6 acting on AC at® angle » to AB.

Resolving in the direction of o,

X 1=(1Cos8)Sin6+ (1Sin8).Cosd
=18in20

Resolving in the direction of 1,

T9X1:(‘ESin9)Sin9— (1Cos0).Cosb
=-1C0s20(0(45)downtoplane

6, =407 +1°; =1at20tot,

Pure Normal stresses on give planes

i

1 6,Cosf

Let the known stresses bec,on BC ands,on AB, then the forces on the element are
proportional to those shown.




Resalving in the direction of o,

.0g=0, Cos*0+0 , Sin’8

Resolving in the direction of T

1,=0,Cos0Sinb-c, Sin6Coso

ru:%(c v~ ,)Sin20

General two dimensional Stress system

c

Cosb

c,Cosf
Resolving in the direction of o,

6 =0y C0s0Cos0 +a, Sin0 Sinf + 1Cos0 Sinb + 1 Sinb Cosd

+1Sin’e

1+Cos’0
(—=)

=6, : +0_x(1-CUS‘l-])

%{n\, +0,) +";'(ﬁv -,)1Cos’0+1Sin’0
Resolving in the direction of T

1,=6,C0s0Sin0-o, Sin6Coso
-1Cos0Cosb+1Sin6Sinod

i :%(G +—6,)Sin20-1Cos20

Example -1

If the stress on two perpendicular planes through a point are 60 N/mm2 tension, 40 N/mm2
compression and 30 N/mm2 shear find the stress components and resultant stress on a plane at

60° to that of the tensile stresses.
—1—-405insu°
30Sin60°
b i

~T—" 30Cos60°

T

30Cos60°
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Resolving

=60Cos60°. Cos60" -40Sin60°.Sin60° + 30C0s60° Sin60° +30Sin60° Cos60°

—EOxf 7—40x£ £ 301>(£ 30x g %

%

:15-30T7.5J§+7.5I
=0 = 1IN/mm’*

and

1, =60Co0s60°. SinB0° +408in60 °.Cos60° - 30Cos60° Cos60" +30Sin60° Sin60°
=153 +1043-7.5+22.5
=583 N/mm’

=0, =/(112+58.32) =59.3N/mm*

atangletothe

y=tan 12 3_ao°15°

(20° to the 60 N/mm?)

Principal Planes
From equation

TH=%{G v—6 4)Sin20-1Cos20

There are values of 0 for which 7, is zero and the plane on which the shear component is
zero are called principal planes.

From equation above.

tan2, =27T (when -1, =0)
(0y=6y)

This gives two values of 28 differing by 180° and hence two values of @ differing by 90°i.e. the
principle planes are two planes at right angles.




Principal Stresses

The stresses on the principal planes will be pure normal (tension or compression) and their
values are called the principal stresses.
We know,

o, =%{ch +cx}+%(cv -0, ) x Cos20+1Sin20

Principalstresses=

1
E(U Y_Ux)z

1
=X(0 ¢+ 0 o)t =E——
2 (o y-0,)%+47°

.21

+
\/(0 0 ) +47

16,00 47
+

-1-—(0 +0y)
2 (o,~0,)2+41°

:%x(c Y+Gx)i% (6 y-0 ) +41°

Shorter method for principal stresses

7 C
ﬂ—bc\ﬁmﬁ

Sing

"> :Cos@

c,CosH
Let AC be a principal plane and & theyprincipal stress acting on its., g, and 1 are the known
stress on planes BC and AB as before.

Resolve in the direction of g
6Sinf=o, Sin6+ 1Cosb
oro-o,=1Cosf
Resolve in the direction of g,
GCOSU:ﬁyCOSU+ISinﬁ
oro—o, =tland (2)
Multiply corresponding sides of equations (1) and (2) i.e.
(6-6,) (rs—crv):'r2
org® -(o,+0,)o+0,0, - =0
Solving
ax® +bx+c=1

~1b++b*-4ca
B 2a

X

Here

e (0,+0,)% \/{c;x +o, ) -40,0, + 42

2

Qrﬁ:%(nl +nv]t% (0,—0, ) +47°

The values of 0 for the principal planes are of course found by substitution of the principal
stresses values in equation (1) & (2).
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Maximum shear stress

o,Cos0
Let AB and BC be the principal planes and @ 1 and € 2the principal stresses.

Then resolve

1y =0, Cos0. Sinf -, Sind. Cosb

:%(02 -o,)Sin20

Hence the maximum shear stress occurs when 2 0= 90°i.e. on planes at 45° to the principal
planes and its magnitude is

=%(cz—o,)

Tl'l'lal

1 2 2
=§ [(G‘—Uy) +41°]

In words : The maximum shear stress is one-half the algebraic difference between the principal
sitresses.

Example =2

At a section in abeam the tensile stress due to bending is 50 N/mm? and there is a shear
stress of 20 N/mm?. Determine from first principles the magnitude and direction of the principal
stresses and calculate the maximum shear stress.

~C

i—' 50N/mm’ xSind
20N/mm? xSind

B

Solution

20N/mm?xCos6
Resolve in the direction AB :
6Sin6=508in8+20Cosh
6-50=20coth ......(1)
Resolve in the direction BC :
6Cos0=208in6......(2)
o =20tan0
Multiplying corresponding sides of equations (i) and (ii)
o(c-50) =20°
6°-500-400=0
6250110 (25-16)
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i.e. the principal stresses are 57 N/mm? tension, 7 N/mm? compression, thetl Jird-bg;ng Zero.

o 57 -7
tanf= — =—or—
20 20 20
Giving 0=70° and 160°, being the directions of the principal planes.

Max shear stress =
= 2(6,-5)

1
—5[57—(—7}]

=32N/mm*
and the planes of maximum shear are at 45° to be principle planes i.e. 0=25° and 115°. (Ans)

Maximum shear stress using Mohr’s Circle

qm[/

-
N / \ e

"\(/__I—d
0:
)

N

The stress circle will be developed to find the stress components on any plane AC which
makes an angle ¢ withAB.

Construction

Mark off PL = @ 1and PM = @ 2(paositive direction to the right). It is shown here for @2 ) 7 1,
but this is not a necessary condition. On LM as diameter describes a circle center O.

Then the radius OL represents the plane of @ 1 (BC) and OM represents the plane of & 2(AB)
plane AC is obtained by rotating. AB through g anticlockwise, and if OM on the stress circle is
rotated through 2 g in the same direction, the radius OR in obtained which will be shown to represent
the plane AC.

OR could equally will be obtained by rotating OL clockwise through 180%-2 ¢, corresponding
to rotating BC clockwise through 90°%-¢ .
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Draw RNLrto PM
Then PN = PO + ON

:%(GT+62)+%(52~01)C0528

(1-Cos260) (1+Cos20)
:0'1 + 0'2
2 2
=0, Sin"8+ 5,C05°6)=6, thenormalstress componenton AC

and RN =%(52 ~6,)Sin20

=1.theshearstresscomponentonAC
Alsotheresultantstress

=0, =/(c% +1%) =PR

And its inclination to the normal of the plane is given ¢=(RPN

q, is found to be a tensile stress and 1,is considered positive if R is above PM,

The stresses on the plane AD, at right angles for AC, are obtained from the radius OR/, at
180%to OR

ie.c',=PN',7", =R'N'

and T, :'cﬂ[, but of opposite type, tending to give an anticlockwise rotation.
The maximum shear stress occurs when RN=OR , i.e. §=45° and is equal in magnitude to

1
OR=§(02 -6,) The maximum value of ¢ is obtained when PR is a tangent to the stress circle.

Two particular cases which have previously been treated analytically will be dealt with by this
method.

1. Pure compression
IF o is the compressive stress the other principal stress is zero.

PL = ¢ numerically, measured to the left for compression, PM =0

Hence,OR :;—n

6,=PN,Compressive
1, = PN, Positive

Maximum shearstress= OR =%~c occuringwhen0=45°




2. Principal stresses equal tension and compression

e

PM = o to the right

PL= otothe left

Here O coincides with P

o, =PN,istensilefor

Obetween+45° compressive for

Bbetween45°and135°

1,=RN.wheng=45"

1, reachmaximum=a, on planes when the normal stress is zero (Pure shear)
Example -3

A piece of materials is subjected to two compressive stresses at right angles, their values
being 40 N/mm2 and 60 N/mmz2. Find the position of the plane across which the resultant stress in
most inclined to the normal and determine the value of this resultant stress.

Solution

o, =60N/mm?Compressure)

a,=40N/mm*(Compressure)

In the figure, the angle ¢ is inclined to the plane of the 40 tons N/m2 compression.

% c
i ]
60 L
ﬂa \U

In above figure PL =60, PM=40, The maximum angle (is obtained when PR is a tangent to
the stress circle.

40

OR=10,PO=50

Theno=Sin™ %:1 130/

6, =PR=—/(50% - 10%) =— 49N/mm’
20=90—-¢
0=39%15'
whichgivestheplanerequired




Example -4

At a point in a piece of elastic material there are three mutually perpendicular planes on
which the stresses are as follows : tensile stress 50 N/mm2, shear stress 40 N/mm2 on plane,
compressive stress 35 N/mm2 and complementary shear stress 40 N/mmz2 on the second plane,
no stress on the third plane. Find (a) the principal stresses and the positions of the plane on which
they act (b) the position of the planes on which there is no normal stress.

Solution
Mark off PN = 50, NR = 40

PN'= .35 N'R'=-40

Join RR/, Cutting NN’ at 0, Draw circle centre O, radius OR

1
Then ON = 5 NN/

=425

OR=1/42 57 + 40° =58 4
PO=PN-ON=7.5
(a) The Principal stresses are
PM = PO + OM = 6.5 N/mm? (tensile)
PL = OL - OP = 50.9 N/mm? (compressure)

or, 20 = tan-1-0__43° 20/
42.5

—0=21"40'
(b) If there is no normal stress, then for that plane N and P coincides and

20 = 180 Cos! =2
58.4
20 = 97° 24/

0=48° 42/ totheprincipalplane
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CHAPTER 4.0
BENDING MOMENT & SHEAR FORCE

4.1 - Types of beam and load
Beam

A structural member which is acted upon by a system of external loads at right angles to its
axis is known as beam.
Types of Beam
1. Cantilever beam
Simply supported beam
Over hanging beam
Rigidity fixed or built in beams
Continous beam

Types of load
1. Concentrated or point load

2. Uniformly distributed load
3. Uniformly varying load

l I ©
)

T/m/ﬂ’rﬂ

4.2. Concepts of share force and bending moment

Shear force

The shearing force at any section of beam represents the tendency for the portion of beam to
one side of the section of slide or shear laterally relative to the other portion.

W, l W

| |
A
R, R,

The resultant of the loads and reactions to the left of A is vertically upwards and the since the
whole became is in equilibrium, the resultant of the forces to the right of AA must also be F acting
down ward. F is called the shearing force.
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Definition
The shearing force at any section of a beam is the algebraic sum of the lateral component of
the forces on either side of the section.

Shearing force will be considered positive when the resultant of the forces to the left is upwards

or to the right in downward.

A shear force diagram is one which shows the variation of shearing force along the length of
the beam.

Concepts of Bending Moment

In a small manner it can be argued that if the moment about the section AA of the forces to the
left is M clockwise then the moment of the forces to the right of AA must be anticlockwise. M is
called the bending moment.

Definition

The algebraic sum of the moments about the section of all the forces acting on other side of
the section.

Bending moment will be considered positive when the moment on the left of section is
clockwise and on the right portion anticlockwise. This is referred as sagging the beam because
concave upwards. Negative B.M is termed as hogging. A BMD is one which shows the variation of
bending moment along the length of the beam.

4.3 Shear force and bending moment diagram and its silent features.
i. llustration in cantilever beam
ii. lllustration in simply supported beam
iii. lllustration in overhang beam
Carrying point load and u.d.L.
Concentrated loads
Example -1

A cantilever of length L carries a concentrated load W at its free end, draw the SF & BM
diagram. WL
.4
—_—

4
I

1
I
L}

[




M BMD WL
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lution
At a section a distance x from the free end, consider the forces to the left.

Then F =-W, and in constant along the whole beam for all values of x. Taking moments
about the section given M = - Wx

Ax=0,M=0,At-x=L, M= -WL

At end from equilibrium condition the fixing moment is WL and reactions W.
Example — 2

A beam 10m long is simply supported at its ends and carries concentrated loads of 30 KN
and 50 KN at distance of 3m from each and. Draw the SF & BM diagram.

30KN 50KN
3m

4m 3m
¥

R
10m 2
36

ion
First calculate R1 and R2 at support
R1x10=30x7+50x3
=R1=36KN

and R2 = 30+50- 36 = 44KN

Let x be the distance of the section from the left hand end.

Shearing force
O <x<3m, F= 36KN
3<x<7,F=36-30=6KN
7 <x <10, F = 36-30-50= -44 KN.

Bending moment
0<X,3M=R1X=236 xKNM
3<X,7,M=R1X-30 (X-3) = 6X +90 KNM

Kx<10,7,M=R1X-30 (X-3)-50 (X-7) =44 X + 440 KNM
Principal values of M are

at X=3m, m = 108 KNM

atx=7m, M =132 KNM
atx=10,M=0.
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Introduction

When any structure is loaded, stresses are induced in the various parts of the structure and
in order to calculate the stresses, where the structure is supported at a number of points, the
bending moments and shearing forces acting must also be calculated.

Definitions
Beam - Beam is structural member which is acted upon by a system of external loads at
right angles to the axis.

Bending - Bending implies deformation of a bar produced by loads perpendicular to its axis
as well as force couples acting in a plane passing through the axis of the bar.

Plane bending - If the plane of loading passes through one of the principal centroidal axes of
the cross section of the beam, the bending is said to be plane.

Point load - A point load or concentrated load is one which is considered to act at a point.

Distributed load - A distributed load is one which is distributed or spread in some manner
over the length of the beam. If the spread is uniform, it is said to be uniformly distributed load. If the
spread is not at uniform rate, it is said to be non-uniformly distributed load.

CLASSIFICATION OF BEAMS

1. Cantilever — A cantilever is a beam whose one end is fixed and the other end free. Fig. 4.1
shows a cantilever with a rigidity fixed into its support and the other end B free. The length between
A & B is known as the length of cantilever.

A?] JB

Cantilever
Fig 4.1

2. Simply supported beam — A simply supported beam is one whose ends freely rest on
walls or columns or knife edges.
[l W5y s
Simply supported beam
Fig. 4.2
3. Over hanging beam — An overhanging beam is one in which the supports are not situated
at the ends i.e. one or both the ends project beyond the supports. In Fig. 4.3 C & D are two supports
and both the ends A and B of the beam are overhanging beyond the supports C & D respectively.
W,
|
supported
Span
Fig. 4.3




. Fixed beam — A fixed beam is one whose both ends are rigidly fixed or built in into
itssupporting walls or columns.

MM

N

Fixed beam
Fig. 4.4

5. Continuous beam — A continuous beam is one which has more than two supports the

supports at the extreme left and right are called the end supports and all the other supports, except
the extreme, are called intermediate supports.

[ | W, | Wy

il —

Continuous beam
Fig. 4.5
SHEAR FORCE

In general if we have to calculate the shear force at a section the following procedure may be
adopted.

(i) Consider the left or the right part of the section.
(i) Add the forces normal to the member on one of the parts.

B

If the right part of the section is chosen, a force on the right part acting downwards is positive
while a force on the right part acting upwards is negative. For instance, if the shear force at a
section x of a beam is required and if the right part x B be considered the forces P & are positive
while the force R is negative. S.F. at X =P+ Q- R

W,

X
T ' : ‘ Section
Q

If the left part of the section be chosen, aforce on the left part acting upwards is positive and
a force on the left part downwards is negative. For instance, if the shear force at X of a beam is

required and if XA is the left part, the force Q is positive while the forces w,&W, are negative.

Fig.4.6

SFatX=Q-W1 'W2

BENDING MOMENT
To find the bending moment at a section of a beam the following procedure may be adopted.
(i) Consider the left or right part of the section.
(i) Remove all restraints and all forces on the part selected

(i) Now introduce each force or reacting element one at a time and find its effect at the
section (i.e. find whether the moment produces a hogging or sagging effect at the section). Treat
sagging moments as positive and hogging moments as negative.

Note that the moment due to every downward force is negative and moment due to every
upward force is positive.

Shear force and bending moment diagrams.




A. CANTILEVER

(i) Cantilever of length L carrying a concentrated load W at the free end.
w

e EEEE—

L W
(+)

S.F. Diagram

A

(“) (1!
. \)
WL BN\ O\ag -
ig.4.7

Fig. 4.7 shows a cantileverAB fixed at Aand free at B and Carrying the load W at the free and B.

Consider a section x at a distance of x from the free end.

S.FatX=Sx =+W

BMatX=Mx =-W x

Hence, we find that the S.F. is constant at all sections of the member between A & B. But the
B. M at any section is proportional to the distance of the section from the free end.

W/ unit run )EJ

A NNenraasassass

o

L

|

|

|

| W,
(+) |

WL

I
X S.F. Diagram | B

X

A
ZW

WL

At x =0i.e.atB BM=0 -

At x =Li.e.atA,B.M=WL

Fig. 4.7 shows the S.F. and B.M diagrams.
(i) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole

length.
W/ unit run l
A W B
AR e
|

|
(+) |

A <1 B

S.F. Diagraml
IX B

A
) I
WL
+ WL

2

Fig 4.8 shows a cantilever AB fixed at Aand free at B carrying a uniformly distributed load of
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W per unit run over the whole span.
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Consider any section X distant x from the end B.

2
SFatX=Sy=+Wy,BMatX=My =-Wy -3=-wX

Hence we find that the variation of the shear force is according to a liner law while the variation
of the bending moment is according to a parabolic Law.

At x =0,Sx=0Mx =0

wL2
Atx =L, Sx=+WL,Mx= —5—

(iii) Cantilever of length L carrying a uniformly distributed load of W per unit run over the whole
length and a concentrated load W at the free end.

W/ unit run
A D -

A

=, Pa(abo‘\c

5\(6'\9“\

Fig.4.10

Fig. 4.10 Shows a cantilever AB fixed at A and free at B and carrying the load system mentioned
above. Consider any section X distant | from the end B. The S.F and the B.M at the section X are
respectively given by

Atx =0,Sx =tW, Mx =-(Wx%2 +WL)
Atx =0,Sx=tW,Mx =0
Atx =L,Sx=+(WL+W),Mx = (WL2 +WL)

B
S.F. varies following a liner law while B.M varies following a parabolic Law.

(iv) cantilever of length L carrying a uniformly distributed load of W per unit run for a distance
a from the free end.

Fig. 4.10 shows a cantileverAB fixed at Aand free at B and carrying the load system mentioned
above.

Consider any section between D and B distant x from the free end B.

S.F and B.M at the section are given by S x =+W x , M x = Wx2

2
The above relations hold good for all values of x between x =0 and x =a (i.e. between B & D)

Hence for this range the S.F. varies following a linear Law while the B.M varies following a
ER. SANAJY KUMAR PANIGRAHY & PROF. SUNIL KUMAR SABAT




parabolic Law.
At x =0,Sx=0Mx =0




At x =3, Sx =+Waand
Mx =- Wa?/2
Now consider any section between D & A, distant x from the end B.

The S.F & B.M at this section are given by

Sx=+Waand M = -Wa(X-a/2)
2
Hence between A& D, S.F. is constant at +Wa b but the B.M varies according to a linear law.

Atx =a, Mx =-Wa(a-a/l2)= -Wa?%2
Atx =L, Mx =-Wa (L-a/2)
Problem
Fig. shows a cantilever subjected to a system of loads. Draw S.F & B.M diagrams.

Solution - At any section between D & E, distant x from E.

05m | 05m | 05m | 05m |

B

B.M=Mx =-500 x

Atx =0,Mx =0 3
2000 kg

At x =0.5m, Mx =-500 x 0.5 =-250kg.m

At any section between C &D, distant x from E,

S.F =S x =+500+800=+1300Kg S.F. Diagram

B.M=Mx =-500x-800 (x-0.5) =-1300x +400 C D

Atx =05, Mx =-1300 x 0.5+400 = -250Kg.m - 250 kg
At x =1M, Mx =-1300 + 400 =-900 Kg.m 1700 kg 900kg

B.M Diagram

. _ 2700 kg
At any section between B & E, distant x from E

Fig. 4.11
S.F=Sx =+500 + 800 +300 = 1600Kg

B.M=M=x =-500x -800(x-0.5) - 300 (x-1) Kg. M =-1600x + 700 Kg.m

At x =1m, Mx =-1600 + 700 = -900 Kg.m

At x =1.5m,Mx =-1600x 1.5+ 700 =-1700 Kg.m

At any section between A & B distant x from E.
S.F =S x =+500+800+300+400 = 2000Kg
B.M=Mx =-500x -800(x-0.5)-300 (x-1) - 400 (x-1.5) = -200x + 1300Kg.m
At x =1.5m, Mx =-2000x 1.5+ 1300 =-1700Kg. m

Atx =2m,M! =-2000x 2 + 1300 =-2700 Kg.m
Beams freely supported at the two ends.
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(i) Simply supported beam of span L carrying a concentrated load at mid span.

Fig 4.12 shows a beam AB simply on the span.

supported at the ends A & B. Let the span (i)
of the beam belL and let the beam carry a

concentrated load W at mid span.
Since the load is symmetrically placed on the span, reaction on the span, reaction at each
W
Li2 J' L/I2 g

W
Ry =HEI=T c

w
sSupport = =5

T W

Ry =—
(4]

For any section between A& C SF=Sy=+ % =

For any section between C & B SF = SF=Sy=—

At the section C the S_.F changes from —;m—j

Al any section between A & C distant » from the end A,
the bending moment is given by,

Mix = +%}[ { saggingmomennt)

At x =0 Mx=0

At = % Ma= 5 B.M Diagram

4
WL Fig. 4.12

Hence the B.M increased uniformly from zero at A to = at C.

Similarly the B.M decreases uniformly from %aﬁ C to zero at B. Maximum bending moment

occurs at mid span i.e. at C where the S_F changes its sign.

Simply supported beam carrying a
concentrated load placed eccentrically
on the span. Fig. 4.13 shows a simply
supported beam AB of span L carrying a

~Arran~nantratad laaAd \A At NAA~~ANntriAaallvg

letAD=a& DB=b
Let R; &R, be the vertical reactions atA&B

For equilibnum of the beam,

Taking moments of the forces on the beam about A,

we have

R,=Wa
. E S.F. Diagram

By=7
R ow_Ma_Wil-a)
2 ) L

Since a+b = L for any section between Aand D

the shearforce = 5 ="."’:a=+E
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Wb

For any section between D & B, the shearforce =Sx =-R, + L

At any section between A & D distant x from A, the bending moment is given by

M =+ Wb (sagging)
L

Atx =0,Mx =0
Atx =0, My = Va0
L
W ab

L

Hence the B.M increases uniformly from zero at the left end Ato atD. Similarly the B.M

W ab
L
It may be observed from the S.F and B.M diagrams that the maximum B.M occurs at D
where the S.F. changes its sign.
4J<N 14KN 71<N
2

(i) Simply supported beam carrying a
number of concentrated loads. AT

will decrease uniformly from at D to zero at the right end B.

1.5m 2.5m 2m m

C D E
Fig. 4.14 shows a simply supported beam

8m
AB of span 8 meters carrying concentrated loads Oiat

of 4KN, 10 KN & 7 KN at distances of 1.5 meters, +
4 meters & 6 meters from the left support.

S.F. Diagram
S.F betweenC& D=+ 10-4 = +6KN D B

S.F between D& E=+10-4-10=-4KN 4KN
S.FbetweenE&B=+10-4-10-7=-11KN

|
B.MatA=0 30KNm

B.MatC=+10x 1.5 =+15KNm (Sagging) 22KNm

B.MatD=+10x4-4 x2.5=+30 KNm D E
(Sagging) B.M. Diagram

B.MatE =+11x 2 = +22 KNM (Sagging) Fig. 4.14

It may be observed from the S.F & B.M
diagrams that the maximum B.M occurs at D where
the S.F changes its sign.

W 7 unit fun

(i) Simply supported beam carrying a
uniformly distributed load of W per unit run over
the whole span.

Fig. 4.15 shows a simply supported beam
AB of span L carrying a uniformly distributed load

| -k Diagram
W per unit run over the whole span. Let Ra & Rb A/CJ\ B
be the vertical reactions at the supports A & B |
respectively. | WL

2

Since the loading is symmetrical on the span,

each vertical reaction equals half the total load on A c B.M Diagrgm
the span. Fig.4.15
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Consider any section X distant y from the left end A.

5.F & B.M at the section X are given by

WL
Sy= 4R, ~Wp=t—-Wy
Wyl WL W
My=Ry ——t = el
TS 2

My=+23(L-1)
WL

Aly=05y= +T Jy=0

Aly= LS];—+%—WL-——E.-'|1 0

L WL WL WL L w2
= Stmt =g =08 M= S L)+

The S.F diagram is a straight line. The 5_F uniformly changes from +— AtAto -ﬂm Bé&
obviously that S_F at Mid span is zero.

The B.M diagram is a parabola. The B.M increases according to a parabolic law from zero at

2
Ato - at the mid span C and from this value the B.M decreases to zero at B following the
B

parabolic law.

(iv) Beam with overhanging at one end and carrying a uniformly distributed load over the
whole length.

Fig. 4.16 shows a simply supported beam ABC with supports at A& B, 6 meters apart with on
over hang BC 2 meters long.

Let R, &R, be the vertical reactions at A& B. For the equilibrium of the beam, taking moments

aboutA, 15t/ m

wehave Rax6=15x8x4 ‘ IB

Rb = 8 tones
Ra=1.5x8-8=4tones
S.F at the left end = +4t

18t

S.Fjustonthe left hand side of B =+4-1.5x 6 =-5t

S.F. just on the right hand side of B=+1.5x2 =3t

SFatC=0 S.F. Diagram
5.33tm

Let S.F be zero at x meters from A,

equating the S.F to zero,
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B.M. Diagram

wegetSx =4-15x =0, X = 2_.67 Fig. 4.16

KZ
My =44 —15
X x 2

Hence the B.M diagram is parabolic

A _4xB8_15.8
BMaty=-MB M., =4x=-—(3

BMaty=6m ie. ﬂtE=4Xﬂ—%iﬁi =-3tm

}2=?+5.331m

Section at which the B.Mis Zero

Since at x=g the B.Mis+5.33 tm & at x = bm the B.M is -3tm there must be a section where

the B.M is zero. This section can be determined by equating the general expression for B.M to
zero. i.e. by the equation

2
X
dx-15=—=0
sl
Sr={4—-0.75x)=0
.'.;(=D&.'.;{=%=5.33m

Letthe BMbezeroat O, AD = ?m

The point O where the B.M is zero called the point of contra flexure or point of inflexion.

For all sections from Ato O the B.M is of the sagging type while for all sections between O &
C the B.M is of the hogging type.

(v) Abeam of length (L+2a) has supports L apart with an overhang a on each side. The beam
carries a concentrated load W at each end. Draw S.F & B.M diagram.

Let DABC be the beam of length (L+2a). Let the supports be at A& B,
so that DA= BC =a

AB=L

Each vertical reaction = W

Ra =R, =W

S.F. at any section between D & A=-W

S.F. at any section between B & C = +W

S.F. at any section between A& B =0
B.MatD=0OB.MatA=-Wa
At any section in AB distant x from D the B.M is given by

Mx F -Wx + W(x-a) =-Wa
B.MatB=-WaB.MatC=0
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The B.M throughout the length is of the
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hogging type.

S.F. Diagram

A B

wa wa
B.M. Diagram
Fig. 417




CHAPTER 5
THEORY OF SIMPLE BENDING

When a beam is loaded it is bent and subjected to bending moments. Consequently,
longitudinal or bending stresses are induced in cross section.

Assumptions in ‘Theory of bending’

1. The material of the beam is perfectly homogenous

2. The stress induced is proportional to the strain & the stress should not exceed the elastic
limit.

3. The value of modules of elasticity (E) is same, for the fibres of the beam under compression

or tension.

4. The transverse section of the beam, which is plane before bending, remains plane after
bending.

5. Thereis no resultant pull or push on the cross section of the beam
6. Theloads are applied in the plane of bending.

7. The transverse section of the beam is symmetrical about a line passing through the
centre of gravity in the plane of bending.

8. The radius of curvature of the beam before bending is very large in comparison to the
transverse dimensions.

As a result of a bending moment or couple, a length of beam will take up a curved shape and
a very short length may be treated as a part of the arc of circle. It follows that at the outor radii the
material will be in tension and at the inner radii in compression and at some radius there will be no
stress. This layer of the material is the neutral layer or neutral axis.

Fig 5.1 shows a longitudinal section of a beam, the neutral layer (axis) N.A. being bent to form
an arc of a circle of radius R. The neutral layer is then, before bending, the length pq, which after
bending becomes p'q’.

Consider some layer rs at a distance Y from pq which after bending becomes r's’. Let p/q/
subtend an angle a at the centre of curvature.

pq =Raandr’s’ =(R-y) a
Initially the parallel layers would have equal lengths, so that Pq = rs and since there is no
stress at the neutral layer, then there is no strain.

p'q’ =pq

Mow the strain in rs= %h utrs=pq =p'q’

p'q'—r's’
s

~5Strain=

But p'g'=Raand r's'=(R-Y)a
Re—(R—Y)a Y

Strain
Ra




fihesiressINs= o4 young s
thenstrain 2—Yor2_E 59
ER"Y R

If a transverse section of the beam is now considered (Fig. 5.2) let a strip of area a, lie ata
distance Y from the neutral axis.

E
Then, the normal force on this area {GH‘FEFEH

E E
Now the moment of this force about the neutral axis 1s =ﬁ‘,~ff~33€}fﬂr E-ﬁﬁa

This is the resisting moment of the matenal caused by the siress produced and the total

E... E
resisting moment is = Eﬁzr Gaor ﬁﬂfﬁa

And = Ty* 8a B the second moment of area about the neutral axis, hin-

=
~.Resisting moment Mﬁxl

But since the resisting moment balances the appled bending moment,

M = moment of resistance

I = Moment of inertia of the section about neutral axis (N.A.)
E = Yong's modulus of elasticity

R = Radius of Curvature of N.A

g = Bending stress

The above equation is known as the ‘Bending equation’.

Position of Meutral Axis

Consider the cross-section of a beam (Fig. 5.2), there will be no resultant force on the section
for condition of equilibnum.

The force acting on a small area 53 at a distance 'y’ from the neutral 2xs is given by




Or the total force normal to the section,
E .

F= =Y Y.da
R

.. For zero resultant force, YY.8a=0

Now Y Y.5a is the moment of the sectional area about the neutral axis and since this moment
is zero, the axis must pass through the centre of area.

Hence the neutral axis or neutral layer, passes through the centre of area.
Section Modules

Referring to the bending equation,

ore= ! where Z =section mod u|us=L
zZ Y
The section modulus is usually quoted for all standard sections and practically is of greater
use. The strength of the beam section depends mainly on the section modulus.
The section modulii of rectangular and circular sections are calculated below.
(i) Rectangular section
Fig. 5.3 shows a rectangular section of width b & depth d.
Let the horizontal centroidal axis be neutral axis.

Moment of inertia about theneutral axis
Distance of the most distant point of the section from the neutral axis.
I

Section modulus Z =

Y

max

But1="% gngy_ -9
I2 max 2

bd3
1o _bd
d 6

2

anlZ=

Moment of resistance, M =GZ=0X%bd2 ..(5.4)

(i) Hollow rectangular section
Referto Fig. 5.4.
Moment of inertia of the section about the neutral axis.

3 3
=80 b1 epe_pgt), v, =2
12 12 2 2

. Section modulus =Z= l

max

BD® - bd*
) %z{(ao%nua)]

D, 60 |

6D

Moment of resistance, M =6Z=06 x{

(BD? -de)}




(iii) Circular section
Referto Fig 5.5
Moment of inertia of the section about the neutral axis.

4
Ttd o
" 64 2

.. Section modulus =Z=
d 3

3
Moment of resistance, M =6Z= .:;x%dE

(iv) Hollow circular section
Referto Fig 5.6

Moment of inertia of the section about the neutral axis.

(D*-d"), Y, =2

I= ! max:E

¥
64
. Section modulus =Z= L

E(Dd _dt)x 2 (Dd d-l)
64 B 32 D
4 4
Moment of resistance, M =oZ=ox-~ & —9)
32 D

}_(5,7)

Example

A 250mm (depth) x 150mm (width) rectangular beam is subjected to maximum bending
moment of 750 KNm determine.

() The maximum stress in the beam.
(i) If the value of E for the beam material is 200 GN/m?.
Find out the radius of curvature for that portion of the beam where the bending is maximum.

(i) The value of the longitudinal stress at a distance of 65mm from the top surface of the

; i 65mm
Solution : Refer to Fig 5.7

Width of the beam = b = 150 mm = 0.15m
Depth of the beam = d = 250 mm = 0.25m

Maximum bending moment M = 750KN.m

60mm

=

Young's modulus of elasticity, E = 200 GN/m2....




(i) Maximum stress in the beam :

4 K|
Momentof inertia | % % 0.0001953m"

Distanceof theneutralaxis (NA) fromtop surfaceof thebeam

Y . 0.125m

s &

usingtherelationg = %

MY 750x10"x0.125
| 0.0001953
4 8x10°N/mm2-480MN/m’

Hence the maximum stress in the beam =480MN/m’ (Ans)

wegeto

(i) Radius of curvature, R:
USIng the relation M _E R= E_ 20021 Ui x0.0001953

:r‘
I RTM 750x10° ek

(i) Longitudinal stress at a distance of 65mm from top surface of the beam, using the
M = .

re‘ation T R

MY, 750x10° x(80x107)
1= 1=
- 0.0001952

= 230 4MN/m2 (Ans)

x10° =MN/m?







CHAPTER 6.0
STRUT

A structural member subjected to an axial compressive force is called a strut.
Column

It is a vertical strut used in building or frame.

Axial load on column

The column fails by compressive stress.

The load, the least value of P which will cause the column to buckle, and it is called the Euler
or crippling load.

The column in actual practice is subjected to following end conditions.
(1) Both ends hinged
(2) Bothends fixed
(3) Oneendis fixed and other end hinged.
(4) Oneendisfixed and other end free.
6.2 Eccentric load in columns

E ntric |

A load whose line of action does not coincide with the axis of a column is called eccentric

—Jl e
!
i
|
|

load.

«

Pl
|
|
|
|
|

Fl T +e

Direct stresses, bending stresses, maximum & minimum stresses.




Consider the above column ABCD subjected to an eccentric load about one axis(Y-Y axis)
Let P =Load acting on the column

e = Eccentricity of the load

b= Width of the column section

d = Thickness of the column

Now Are of the section = bd

d.bd

Moment of Inertia, | = EVE

dlb?®
Modulus of section, E=L ,/I/E db*

y B, 12

Direct stress. o =§

Moment due to load, M=p.e
Bending stress at any point of column section at a distance y from y-y-awxs

I}

o "3 _6M_6pe_6pe

*"dgp° db° db° ADb
2

Total stress = direct stress + bending stress

A rectangular column 200mm wide and 150mm thick is carrying a vertical load of 120KN at
an eccentricity of 50mm in a plane bisecting the thickness determine the maximum and minimum

intensities of stress in the section. 120KN

Solution 50 [mm

y

/|/_

Elevation
200

[1°

C

I Plan

' 0 min O max
Given

b =200mm, d = 150mm, p = 120KN, e = 50 mm
ER. SANAJY KUMAR PANIGRAHY & PROF. SUNIL KUMAR SABAT




Maximum stress

A=bxd=200x 150 =30,000 mm2

f1
30000 | 200

120x10*( ExSEIJ

=10N/mm* =10MPa (Ans)

Minimuwm Stress

s
=0 s
al"5)
_120x10° ['I— 6x50 |
30,000 200 |
=—2MPa (tension)

6.4 Buckling load computation

(1) Columns with both ends hinged

=:n::EI

F!I
L!

1

(2) Columns with one end fixed and the other free

n*El

p=I 2
-

Cohers

E — Youngs modulus

I=Moment of Inertia about YY-axs.

(3) Columns with both ends fixed.

(4)




CHAPATER 7.0
TORSION

7.1 Assumption of pure torsion

If a shaft is acted upon by a pure torque T about its polar axis, shear stress will be set up in
directions perpendicular to the radius on all transverse sections. This is called as the shaft under
torsion.

Following assumptions are made.
1.  The material of the shaft is uniform through out
2.  The twist along the shaft is uniform.

3. Normal cross sections of the shaft, which were plane and circular before the twist,
remains plane and circular even after the twist.

4. All diameters of the normal cross section which were straight before the twist, remain
straights with their magnitude unchanged, after the twist.

7.2 The torsion equation for solid shaft.

These above assumption is justified by the symmetry of the section.

.

The left hand figure shows the shear strain @ of elements at a distance r from the axis (pis
constant far constant T), so that a line onginally OA twists to OB, and £ACB=6 the relative angle of
twist of cross sections a distance L apart.

Arc AB=ré=Lg(approx)
But {p=%, where G—modulus of rigidity

I.
ar =

8

X
G
G
or —=——
L

e
T
3

The torque can be equated to the sum of the moments of the tangential stresses on the
element 2rrdr;




ie. T=[t(2nrdr)r

or,T:@.J
L
Where Jpolarmomentofinertial
T GO
L
Go
L

4
forasolidshaftJ= ﬂ
32

o
combing—
47

andthemaxstress
1
1T g D
2
foraholloro shaft

T

T
J=—(D*-d*
3! )
16.D.T D
and =————atr=—
Tmax T[(D4_d4) r 2

Torsional stiffness K= % = %

7.3 Comparison between solid and hollow shaft subjected to pure torsion.
Example
Compare the weights of equal lengths of hollow and solid shaft to transmit a given torque for

the same maximum shear stress if the inside diameter is g—of the outside.

Solution

T 2 D

Nro,—=—= for solidshaft
D 16 :

and —=———=for hollow shaft

16D

Tan( [2y]
or—=—-|1-| =
T 16 3
65x DT

" 81x16
Equatingthesetwoshaft
nD* 65xnDT
16 81x16
D, =D.3,/81/65 =1.075D

T
T_=(D;'-d%
T

D,=1.075D




Ratio of weights of equal lengths

=(D2-d)/D?

4
=(D, /d)y’ 1-—}
o, )[ .
:(5}2)(1‘0752
9
=0.642

Problem

A circular shaft of 50mm diameter is required to transmit torque from one shaft to another
find the safe torque, which the shaft can transmit. If the 1=40MPa

Solution

D=50mmr,_, =40MPa
weknow

T="xD°
16

- x40x50°
16

=0.982x10°N-mm
=0.982KN-m

ER. SANAJY KUMAR PANIGRAHY & PROF. SUNIL KUMAR SABAT



