GANDHI SCHOOL OF ENGINEERING ## BHABANDHA, BERHAMPUR **BRANCH:- ELECTRICAL ENGINEERING** SEMESTER:- 5TH SUBJECT:- UEET GROUP-1&2 ## Name of the Faculty- ER.RABINDRA DAS &ER. SUBRAT KUMAR BISOYI | | | | Topic to be taken | | | Actual topictaken | | | |-----------|----------------------|---------------|--|--------------------------------|--|---|--|---------| | SI.
No | Topic/Module | No. of period | Details of the topics | Date | Topic
No. | Topic Name | Date | Remarks | | 1 | ELECTROLYTIC PROCESS | 08 | 1.1. Definition and Basic principle of Electro Deposition. 1.2. Important terms regarding electrolysis. 1.3. Faradays Laws of Electrolysis. 1.4. Definitions of current efficiency, Energy efficiency. 1.5. Principle of Electro Deposition. 1.6. Factors affecting the amount of Electro Deposition. 1.7. Factors governing the electro deposition. 1.8. State simple example of extraction of metals. 1.9. Application of Electrolysis | 08.08.2023
TO
17.08.2023 | 1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8 | Definition and Basic principle of Electro Deposition. Important terms regarding electrolysis. Faradays Laws of Electrolysis. Definitions of current efficiency, Energy efficiency. Principle of Electro Deposition. Factors affecting the amount of Electro | 08.08.2023
09.08.2023
10.08.2023
11.08.2023
12.08.2023
14.08.2023
16.08.2023
17.08.2023 | | | | | | | | | Deposition. Factors governing the electro deposition. State simple example of extraction of metals. Application of Electrolysis | | |---|--------------------|----|---|--------------------------------|---|---|--| | 2 | ELECTRICAL HEATING | 08 | 2.1. Advantages of electrical heating. 2.2. Mode of heat transfer and Stephen's Law. 2.3. Principle of Resistance heating. (Direct resistance and indirect resistance heating.) 2.4. Discuss working principle of direct arc furnace and indirect arc furnace. 2.5. Principle of Induction heating. 2.5.1. Working principle of direct core type, vertical core type and indirect core type Induction furnace. 2.5.2. Principle of coreless induction furnace and skin effect. 2.6. Principle of dielectric heating and its application. 2.7. Principle of Microwave heating and its application. | 18.08.2023
TO
26.08.2023 | 2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.6
2.7 | Advantages of electrical heating. Mode of heat transfer and Stephen's Law. Principle of Resistance heating. (Direct resistance and indirect resistance heating.).4. Discuss working principle of direct arc furnace and indirect arc furnace. Principle of Induction heating. Working principle of direct core type, vertical core type and indirect core type Induction furnace. Principle of coreless induction furnace and skin effect. Principle of dielectric heating and its application. Principle of Microwave heating and its application. | 18.08.2023
19.08.2023
21.08.2023
22.08.2023
23.08.2023
24.08.2023
25.08.2023
26.08.2023 | | 3 | PRINCIPLES OF
ARC WELDING | 08 | 3.1. Explain principle of arc welding. 3.2. Discuss D. C. & A. C. Arc phenomena. 3.3. D.C. & A. C. arc welding plants of single and multi-operation type. 3.4. Types of arc welding. 3.5. Explain principles of resistance welding. 3.6. Descriptive study of different resistance welding methods | 28.08.2023
TO
12.09.2023 | 3.1
3.2
3.3
3.4
3.5
3.6 | Explain principle of arc welding. Discuss D. C. & A. C. Arc phenomena. D.C. & A. C. arc welding plants of single and multioperation type. Types of arc welding. Explain principles of resistance welding. Descriptive study of different resistance welding methods | 28.08.2023
29.08.2023
31.08.2023
01.09.2023
04.09.2023
07.09.2023
11.09.2023
12.09.2023 | |---|------------------------------|----|--|--------------------------------|---|--|--| | 4 | ILLUMINATION | 12 | 4.1. Nature of Radiation and its spectrum. 4.2. Terms used in Illuminations. [Lumen, Luminous intensity, Intensity of illumination, MHCP, MSCP, MHSCP, Solid angle, Brightness, Luminous efficiency.] 4.3. Explain the inverse square law and the cosine law. 4.4. Explain polar curves. 4.5. Describe light distribution and control. Explain related definitions like maintenance factor and depreciation factors. 4.6. Design simple lighting schemes and depreciation factor. 4.7. Constructional feature and working of Filament lamps, effect of variation of voltage on working of filament lamps. 4.8. Explain Discharge lamps. 4.9. State Basic idea about excitation in gas discharge lamps. 4.10. State constructional factures and operation of Fluorescent lamp. (PL and PLL | 13.09.2023
TO
30.09.2023 | 4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9 | Nature of Radiation and its spectrum. Terms used in Illuminations. [Lumen, Luminous intensity, Intensity of illumination, MHCP, MSCP, MHSCP, Solid angle, Brightness, Luminous efficiency. Explain the inverse square law and the cosine law. Explain polar curves. Describe light distribution and control. Explain related definitions like maintenance factor and depreciation factors. Design simple lighting schemes and depreciation factor. | 13.09.2023
14.09.2023
15.09.2023
21.09.2023
22.09.2023
23.09.2023 | | | Lamps) 4.11. Sodium vapor lamps. 4.12. High pressure mercury vapor lamps. 4.13. Neon sign lamps. 4.14. High lumen output & low consumption fluorescent lamps. | 4 4 | Constructional feature and working of Filament lamps, effect of variation of voltage on working of filament lamps. Explain Discharge lamps. 25.09.2023 26.09.2023 27.09.2023 27.09.2023 29.09.2023 20.09.2023 20. | |----------------------|---|--|--| | 5 INDUSTRIAL DRIVES: | 5.1. State group and individual drive. 5.2. Method of choice of electric drives. 5.3. Explain starting and running characteristics of DC and AC motor. 5.4. State Application of: 5.4.1. DC motor. 5.4.2. 3-phase induction motor. 5.4.3. 3 phase synchronous motors. 5.4.4. Single phase induction, series motor, universal motor and repulsion motor. | TO ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! | 5.1 State group and individual drive. 5.2 Method of choice of electric drives. 5.4 Explain starting and running characteristics of DC and AC motor. 5.4.3 State Application of: DC motor. 3 phase induction motor. 3 phase synchronous motors. Single phase induction, series motor, universal | | | | | | | | motor and repulsion motor. | | | |---|-----------------------|----|--|--------------------------------|---|---|--|--| | 6 | ELECTRIC
TRACTION: | 14 | 6.1. Explain system of traction. 6.2. System of Track electrification. 6.3. Running Characteristics of DC and AC traction motor. 6.4. Explain control of motor: 6.4.1. Tapped field control. 6.4.2. Rheostatic control. 6.4.3. Series parallel control. 6.4.4. Multi-unit control. 6.4.5. Metadyne control. 6.5. Explain Braking of the following types: 6.5.1. Regenerative Braking. 6.5.2. Braking with 1-phase series motor. 6.5.3. Magnetic Braking. | 14.10.2023
TO
16.11.2023 | 6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.5
6.5.1
6.5.2
6.5.3 | System of traction. System of Track electrification. Running Characteristics of DC and AC traction motor. Explain control of motor: Tapped field control. Rheostat control. Series parallel control. Multi-unit control. Metadyne control. Explain Braking of the following types: Regenerative Braking. Braking with 1-phase series motor. Magnetic Braking. | 14.10.2023
16.10.2023
17.10.2023
18.10.2023
17.10.2023
18.10.2023
02.11.2023
03.11.2023
04.11.2023
06.11.2023
07.11.2023
09.11.2023
10.11.2023
11.11.2023
15.11.2023
16.11.2023 | | Electrical Engg. Gandhi School of Engg. Berhampur (Gm.) HOD, ELECTRICAL