GANDHI SCHOOL OF ENGINEERING BHABANDHA, BERHAMPUR SESSION PLAN ### 6TH SEMESTER, BRANCH-MECHANICAL(GROUP 1) # TH 4b. ADVANCE MANUFACTURING PROCESSES | Name of the Faculty – PROF. LAKSHMI NARAYANA PANDA | | | | | | | | | |--|---|--|--------------------------------|--|---|---------|--|--| | | | Topics to be taken | | | | | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | Details of the topics | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | | | 1. Modern Machining
Processes | 20 | 1.1 Introduction – comparison with traditional machining. 1.2 Ultrasonic Machining: principle, Description of equipment, applications. 1.3 Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications. 1.4 Wire cut EDM: Principle, Description of equipment, controlling parameters; applications. 1.5 Abrasive Jet Machining: principle, description of equipment, Material removal rate, application. 1.5 Laser Beam Machining: principle, description of equipment, Material removal rate, application. 1.6 Electro Chemical Machining: principle, description of equipment, Material removal rate, application. 1.7 Plasma Arc Machining – principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. 1.8 Electron Beam Machining - principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. | 19.01.2024
TO
21.02.2024 | 1.1 Introduction – comparison with traditional machining. 1.2 Ultrasonic Machining: principle, Description of equipment, applications. 1.3 Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications. 1.4 Wire cut EDM: Principle, Description of equipment, controlling parameters; applications. 1.5 Abrasive Jet Machining: principle, description of equipment, Material removal rate, application. 1.5 Laser Beam Machining: principle, description of equipment, Material removal rate, application. 1.6 Electro Chemical Machining: principle, description of equipment, Material removal rate, application. 1.7 Plasma Arc Machining – principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. 1.8 Electron Beam Machining - principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. | 19.01.2024 20.01.2024 24.01.2024 30.01.2024 31.01.2024 2.02.2024 3.02.2024 6.02.2024 7.02.2024 10.02.2024 11.02.2024 17.02.2024 20.02.2024 20.02.2024 | | | | | 2. Plastic Processing | 10 | 2.1 Processing of plastics. 2.2 Moulding processes: Injection moulding, Compression moulding, Transfer moulding. 2.3 Extruding; Casting; Calendering. 2.4 Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing. 2.5 Applications of Plastics | 23.02.2024
TO
12.03.2024 | 2.1 Processing of plastics. 2.2 Moulding processes: Injection moulding, Compression moulding, Transfer moulding. 2.3 Extruding; Casting; Calendering. 2.4 Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing. 2.5 Applications of Plastics | 23.02.2024
24.02.2024
27.02.2024
28.02.2024
1.03.2024
2.03.2024
6.03.2024 | |-----------------------|----|---|--------------------------------|--|---| |-----------------------|----|---|--------------------------------|--|---| | 3. Additive
Manufacturing Process | 15 | 3.1 Introduction, Need for Additive Manufacturing 3.2 Fundamentals of Additive Manufacturing, AM Process Chain 3.3 Advantages and Limitations of AM, Commonly used Terms 3.4 Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies. 3.5 Application –Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications. 3.6 Web Based Rapid Prototyping Systems. 3.7 Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes. | 13.03.2024
TO
3.04.2024 | 3.1 Introduction, Need for Additive Manufacturing 3.2 Fundamentals of Additive Manufacturing, AM Process Chain 3.3 Advantages and Limitations of AM, Commonly used Terms 3.4 Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies. 3.5 Application —Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications. 3.6 Web Based Rapid Prototyping Systems. 3.7 Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes. | 13.03.2024
15.03.2024
16.03.2024
19.03.2024
20.03.2024
22.03.2024
23.03.2024
27.03.2024
30.03.2024
2.04.2024
3.04.2024 | | |--------------------------------------|----|---|-------------------------------|---|--|--| |--------------------------------------|----|---|-------------------------------|---|--|--| | 4. Special Purpose
Machines (SPM) | 7 | 4.1 Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design. | 5.04.2024
TO
12.04.2024 | 4.1 Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design. | 5.04.2024
6.04.2024
9.04.2024
10.04.2024
12.04.2024 | |--------------------------------------|---|---|--------------------------------|---|--| | 5. Maintenance of
Machine Tools | 8 | 5.1 Types of maintenance,
Repair cycle analysis, Repair
complexity, Maintenance
manual, Maintenance records,
Housekeeping. Introduction to
Total Productive Maintenance
(TPM) | 13.04.2024
TO
24.04.2024 | 5.1 Types of maintenance,
Repair cycle analysis, Repair
complexity, Maintenance
manual, Maintenance records,
Housekeeping. Introduction to
Total Productive Maintenance
(TPM) | 13.04.2024
16.04.2024
17.04.2024
19.04.2024
20.04.2024
23.04.2024
24.04.2024 | **CLASS COVERED BY** HOD Mechanical Engg. Gandhi School of Engg. Berhampur (Gm.) HOD, MECHANICAL # GANDHI SCHOOL OF ENGINEERING BHABANDHA, BERHAMPUR #### SESSION PLAN ### 6TH SEMESTER, BRANCH-MECHANICAL(GROUP 2) # TH 4b. ADVANCE MANUFACTURING PROCESSES | Name of the Faculty – ER. BEDA PRAKASH NAYAK | | | | | | | | | |--|---|--|--------------------------------|--|--|---------|--|--| | | | Topics to be taken | | | | | | | | SL NO
&
CHAPTER | No. of
Periods
assigned by
SCTE & VT | Details of the topics | PLANNED
DATE | Details of the topics | ACTUAL
DATE | Remarks | | | | 1. Modern Machining
Processes | 20 | 1.1 Introduction – comparison with traditional machining. 1.2 Ultrasonic Machining: principle, Description of equipment, applications. 1.3 Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications. 1.4 Wire cut EDM: Principle, Description of equipment, controlling parameters; applications. 1.5 Abrasive Jet Machining: principle, description of equipment, Material removal rate, application. 1.5 Laser Beam Machining: principle, description of equipment, Material removal rate, application. 1.6 Electro Chemical Machining: principle, description of equipment, Material removal rate, application. 1.7 Plasma Arc Machining – principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. 1.8 Electron Beam Machining - principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. | 18.01.2024
TO
15.03.2024 | 1.1 Introduction – comparison with traditional machining. 1.2 Ultrasonic Machining: principle, Description of equipment, applications. 1.3 Electric Discharge Machining: Principle, Description of equipment, Dielectric fluid, tools (electrodes), Process parameters, Output characteristics, applications. 1.4 Wire cut EDM: Principle, Description of equipment, controlling parameters; applications. 1.5 Abrasive Jet Machining: principle, description of equipment, Material removal rate, application. 1.5 Laser Beam Machining: principle, description of equipment, Material removal rate, application. 1.6 Electro Chemical Machining: principle, description of equipment, Material removal rate, application. 1.7 Plasma Arc Machining – principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. 1.8 Electron Beam Machining - principle, description of equipment, Material removal rate, Process parameters, performance characterization, Applications. | 18.01.2024
19.01.2024
25.01.2024
1.02.2024
2.02.2024
8.02.2024
9.02.2024
15.02.2024
22.02.2024
23.02.2024
29.02.2024
1.03.2024
7.03.2024
14.03.2024 | | | | | 2. Plastic Processing | 10 | 2.1 Processing of plastics. 2.2 Moulding processes: Injection moulding, Compression moulding, Transfer moulding. 2.3 Extruding; Casting; Calendering. 2.4 Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing. 2.5 Applications of Plastics | 21.03.2024
TO
19.04.2024 | 2.1 Processing of plastics. 2.2 Moulding processes: Injection moulding, Compression moulding, Transfer moulding. 2.3 Extruding; Casting; Calendering. 2.4 Fabrication methods-Sheet forming, Blow moulding, Laminating plastics (sheets, rods & tubes), Reinforcing. 2.5 Applications of Plastics | 21.03.2024
22.03.2024
28.03.2024
4.04.2024
5.04.2024
12.04.2024
18.04.2024 | | |-----------------------|----|---|--------------------------------|---|--|--| |-----------------------|----|---|--------------------------------|---|--|--| Bela Poskul Mayak. **CLASS COVERED BY** HOD Mechanical Engg. Gandhi School of Engg. Berhampur (Gm.) HOD, MECHANICAL | Name of the Faculty – l | ER. MANASI BHOI | | | | |-----------------------------------|---|--------------------------------|---|--| | | Topics to be taken | I | | | | 3. Additive Manufacturing Process | 3.1 Introduction, Need for Additive Manufacturing 3.2 Fundamentals of Additive Manufacturing, AM Process Chain 3.3 Advantages and Limitations of AM, Commonly used Terms 3.4 Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies. 3.5 Application –Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications. 3.6 Web Based Rapid Prototyping Systems. 3.7 Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes. | 23.01.2024
TO
28.02.2024 | 3.1 Introduction, Need for Additive Manufacturing 3.2 Fundamentals of Additive Manufacturing, AM Process Chain 3.3 Advantages and Limitations of AM, Commonly used Terms 3.4 Classification of AM process, Fundamental Automated Processes, Distinction between AM and CNC, other related technologies. 3.5 Application –Application in Design, Aerospace Industry, Automotive Industry, Jewelry Industry, Arts and Architecture. RP Medical and Bioengineering Applications. 3.6 Web Based Rapid Prototyping Systems. 3.7 Concept of Flexible manufacturing process, concurrent engineering, production tools like capstan and turret lathes, rapid prototyping processes. | 23.01.2024
24.01.2024
30.01.2024
31.01.2024
6.02.2024
7.02.2024
13.02.2024
21.02.2024
27.02.2024
28.02.2024 | | 4. Special Purpose
Machines (SPM) | 7 | 4.1 Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design. | 5.03.2024
TO
19.03.2024 | 4.1 Concept, General elements of SPM, Productivity improvement by SPM, Principles of SPM design. | 5.03.2024
6.03.2024
12.03.2024
13.03.2024
19.03.2024 | |--------------------------------------|---|---|--------------------------------|---|---| | 5. Maintenance of
Machine Tools | 8 | 5.1 Types of maintenance,
Repair cycle analysis, Repair
complexity, Maintenance
manual, Maintenance records,
Housekeeping. Introduction to
Total Productive Maintenance
(TPM) | 20.03.2024
TO
24.04.2024 | 5.1 Types of maintenance, Repair cycle analysis, Repair complexity, Maintenance manual, Maintenance records, Housekeeping. Introduction to Total Productive Maintenance (TPM) Revision- | 20.03.2024
27.03.2024
2.04.2024
3.04.2024
9.04.2024
10.04.2024
16.04.2024
17.04.2024
23.04.2024
24.04.2024 | Manasi Bhoi CLASS COVERED BY HOD Mechanical Engg. Gandhi School of Engg. Berhampur (Gm.) HOD, MECHANICAL