TEACHING AND LEARNING MATERIAL # SUBJECT:DIGITAL ELECTRONICS& MICROPROCESSOR SEMESTER:5TH SUBMITTED BY:-ER. LALIT NAYAK &ER.PRAGYAN PARMITA MAHUNTA ## **UNIT-1** ## **NUMBER SYSTEM & CODES** | Binary
Number | 1 | 0 | 1 | 1 | 0 | 1 | Decimal
Number | |------------------------------|----------------|----|----------------|----------------|----------------|----------------|-------------------| | Power of
base | 2 ⁵ | 24 | 2 ³ | 2 ² | 2 ¹ | 2 ⁰ | | | Decimal equivalent | 32 | 16 | 8 | 4 | 2 | 1 | | | Magnitude
of each
term | 32 | 0 | 8 | 4 | 0 | 1 | 45 | ## Octal Number System - The base is 8. - Symbols: 0, 1, 2, 3, 4, 5, 6, and 7. - Positional weights : $$8^0 = 1$$ $$8^1 = 8$$ $$8^2 = 64$$ $$8^3 = 256$$ $$8^{-1} = 1/8$$ $$8^{-2} = 1/64$$ $$8^{-3} = 1/256$$ | OCTAL | BINARY | |----------|---| | 01234567 | 000
001
010
011
100
101
110 | | Decimal | Binary | Hexadecimal | |---------|--------|-------------| | 0 | 0000 | 0 | | 1 | 0001 | 1 | | 2 | 0010 | 2 | | 3 | 0011 | 3 | | 4 | 0100 | 4 | | 5 | 0101 | 5 | | 6 | 0110 | 6 | | 7 | 0111 | 7 | | 8 | 1000 | 8 | | 9 | 1001 | 9 | | 10 | 1010 | A | | 11 | 1011 | В | | 12 | 1100 | С | | 13 | 1101 | D | | 14 | 1110 | E | | 15 | 1111 | F | 1110011100010000 E710 | Name | Graphic
symbol | Algebraic function | Truth
table | |------------------------------------|---------------------|-----------------------------------|---| | AND | х | $F = x \cdot y$ | x y F
0 0 0
0 1 0
1 0 0
1 1 1 | | OR | <i>x</i> | F = x + y | x y F
0 0 0
0 1 1
1 0 1
1 1 1 | | Inverter | xF | F = x' | x F
0 1
1 0 | | Buffer | <i>x</i> — <i>F</i> | F = x | x F
0 0
1 1 | | NAND | <i>x</i> | F = (xy)' | x y F
0 0 1
0 1 1
1 0 1
1 1 0 | | NOR | х
у | $F = (x + y)^r$ | x y F
0 0 1
0 1 0
1 0 0
1 1 0 | | Exclusive-OR
(X OR) | x | $F = xy' + x'y$ $= x \oplus y$ | 0 0 0
0 1 1
1 0 1
1 1 0 | | Exclusive-NOR
or
equivalence | x | $F = xy + x'y'$ $= (x \oplus y)'$ | x y F 0 0 1 0 1 0 1 0 1 0 1 1 1 | ## 2-input AND gate 2-input OR gate NOT Gate Switch A - Open = "0", Lamp - ON = "1" Switch A - Closed = "1", Lamp - OFF = "0" NAND GATE ## NAND GATE **Electrical Circuit** NOR GATE # NOR GATE A B Electrical Circuit #### NOR Gate DIP14 EX-OR GATE **EX-NOR GATE** # UNIT-2 COMBINATIONAL CIRCUITS #### **HALF ADDER** | Truth Table | | | | | | |-------------|-----|--------|-------|--|--| | Inj | out | Output | | | | | A | В | Sum | Carry | | | | 0 | 0 | 0 | 0 | | | | 0 | 1 | 1 | 0 | | | | 1 | 0 | 1 | 0 | | | | 1 | 1 | 0 | 1 | | | | | Inputs | Out | puts | | |---|--------|-----------------|------|-------| | Α | В | C _{in} | Sum | Carry | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 0 | | 0 | 1 | 0 | 1 | 0 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 0 | 1 | | 1 | 1 | 0 | 0 | 1 | | 1 | 1 | 1 | 1 | 1 | ## **HALF SUBTRACTOR** ## **FULL SUBTRACTOR** | | Input | | Outp | ut | |---|-------|---|------------|--------| | Α | В | С | Difference | Borrow | | 0 | 0 | 0 | 0 | 0 | | 0 | 0 | 1 | 1 | 1 | | 0 | 1 | 0 | 1 | 1 | | 0 | 1 | 1 | 0 | 1 | | 1 | 0 | 0 | 1 | 0 | | 1 | 0 | 1 | 0 | 0 | | 1 | 1 | 0 | 0 | 0 | | 1 | 1 | 1 | 1 | 1 | #### **4:1 MULTIPLEXER** | Input | S1 | S0 | Y | |----------------------------|------------------|------------------|---| | $I_0 \\ I_1 \\ I_2 \\ I_3$ | 0
0
1
1 | 0
1
0
1 | I ₀ I ₁ I ₂ I ₃ | $$Y = \ S_1S_0I_3 + \ S_1\overline{S_0}I_2 + \ \overline{S_1}S_0I_1 + \ \overline{S_1}\overline{S_0}I_0$$ ## 4 to 1 Multiplexer and its truth table #### 1:4 DEMULTIPLEXER | | Sel | ect | O/P | | | | | |---|-----|-----|----------------|----------------|----------------|----------------|--| | I | SO | S1 | D ₀ | D ₁ | D ₂ | D ₃ | | | 1 | 0 | 0 | 1 | 0 | 0 | 0 | | | 1 | 0 | 1 | 0 | 1 | 0 | 0 | | | 1 | 1 | 0 | 0 | 0 | 1 | 0 | | | 1 | 1 | 1 | 0 | 0 | 0 | 1 | | #### **7 SEGMENT DISPLAY** d ## UNIT-3 d ## **SEQUENTIAL CIRCUIT** ## SR Flip-Flop | State | S | R | Q | Q' | Description | |---------|---|---|---|----|-------------| | Set | 1 | 0 | 0 | 1 | Set Q'>>1 | | | 1 | 1 | 0 | 1 | No change | | Reset | 0 | 1 | 1 | 0 | Reset Q'>>0 | | | 1 | 1 | 1 | 0 | No change | | Invalid | 0 | 0 | 1 | 1 | Invalid | | | | | | | Condition | ## JK Flip-Flop ## T Flip-Flop | Clock | J | K | Q_{n+1} | State | |-------|---|---|------------------|--------| | 0 | X | X | Q _n | | | 1 | 0 | 0 | Q n | Hold | | 1 | 0 | 1 | 0 | Reset | | 1 | 1 | 1 | 1 | Set | | 1 | 1 | 1 | \overline{Q}_n | Toggle | ## **T FLIP-FLOP** ## **D FLIP-FLOP** ## Truth Table for the D-type Flip Flop | Clock | D | Q | Q' | Description | |-------|---|---|----|-------------| | ↓ » 0 | X | Q | Q' | Memory | | | | | | no change | | ↑ » 1 | 0 | 0 | 1 | Reset Q » 0 | | ↑ » 1 | 1 | 1 | 0 | Set Q » 1 | Symbols ↓ and ↑ indicates the direction of the clock pulse. D-type flip flop assumed these symbols as edge-triggers. # <u>UNIT-4:</u> <u>REGISTERS, MEMORIES & PLD</u> **SERIAL IN SERIAL OUT** **SERIAL- IN PARALLEL-OUT** | CLK Pulse | QA | QB | QC | 0
QD | | |-----------|----|--------------|-------|----------------|--| | 0 | 0 | 0 | 0 | | | | 1 | 1 | 0 | ۰ < | 0 | | | 2 | 0 | 7 1 | × ∘ √ | 7 0 | | | 3 | 1 | 7 ° K | 71/ | <i>⊃</i> 1 ° | | | 4 | 1 | \nearrow 1 | , × | J 1 | | ## **PARALLEL IN SERIAL OUT** ## **PARALLEL IN PARALLEL OUT** Table I Data Movement in Right-Shift PIPO Shift Register | Clock
Cycle | SH / LD | Q ₁ | Q ₂ | \mathbf{Q}_3 | | Q _{n-1} | \mathbf{Q}_n | Parallel Data | |----------------|---------|----------------|-------------------------------|-----------------------|-------------------------|-------------------------------|----------------------------------|---------------| | 1 | 0 | B_1 | B_2 | B ₃ 、 | | B _{n-1} | B_n | | | 2 | 1 | 0 | [™] B ₁ 、 | * B ₂ | , | $^{\bullet}$ B _{n-2} | [™] B _{n-1} | Loading | | 3 | 1 | 0 | 0 \ | * B_1 , | | $^{B}_{n-3}$ | $^{\mathbf{H}}$ B _{n-2} | | | - | | | . × | | Z . | 7 | | | | - | | - | 4 | | | 1.2 | - | | | | | - | F | Parallel Data Retrieval | | | | Figure 3 Output Waveform of n-bit Right-Shift PIPO Shift Register ## **DECADE COUNTER** ## **TRUTH TABLE** | Clock Pulse | Q3 | Q2 | Q1 | QO | | |-------------|----|----|----|----|---| | 0 | 0 | 0 | 0 | 0 | < | | 1 | 0 | 0 | 0 | 1 | | | 2 | 0 | 0 | 1 | 0 | | | 3 | 0 | 0 | 1 | 1 | | | 4 | 0 | 1 | 0 | 0 | | | 5 | 0 | 1 | 0 | 1 | | | 6 | 0 | 1 | 1 | 0 | | | 7 | 0 | 1 | 1 | 1 | | | 8 | 1 | 0 | 0 | 0 | | | 9 | 1 | 0 | 0 | 1 | - | ## **RING COUNTER** ## **RIPPLE COUNTER** ## **RAM** ## **ROM** ## <u>PLD</u> Simplified programmable logic device ## UNIT-4: 8085 MICROPROCESSOR #### **PIN DIAGRAM** ## ARCHITECTURE OF INTEL 8085A MICROPROCESSOR # UNIT-5: INTERFACING AND SUPPORT CHIPS Intel 8255 ## **FUNCTIONAL BLOCK DIAGRAM**