GANDHI SCHOOL OF ENGINEERING ## BHABANDHA, BERHAMPUR **BRANCH:- ELECTRICAL ENGINEERING** **SEMESTER:-** 6TH **SUBJECT:- SWITCH GEAR AND PROTECTIVE DEVICES** **GROUP- 1&2** ## Name of the Faculty- ER.GIRIDHAREE PRADHAN & ER. DEEPAK KUMAR MAHARANA | | | | Topic to be taken | | Actual topic taken | | | | |-----------|--------------------------------|---------------|--|--------------------------------|---|---|--|--------| | Sl.
No | Topic/Module | No. of period | Details of the topics | Date | Topic No. | Topic Name | Date | Remark | | 1. | INTRODUCTION TO
SWITCH GEAR | 06 | 1.1 Essential Features of switchgear. 1.2 Switchgear Equipment. 1.3 Bus-Bar Arrangement. 1.4 Switchgear Accommodation. 1.5 Short Circuit. 1.6 Short circuit. 1.7 Faults in a power system | 18.01.2024
TO
25.01.2024 | 1.1
1.2
1.3
1.4
1.5
1.6
1.7 | 1.1 Essential Features of switchgear. 1.2 Switchgear Equipment. 1.3 Bus-Bar Arrangement. 1.4 Switchgear Accommodation. 1.5 Short Circuit. 1.6 Short circuit. 1.7 Faults in a power system | 18.01.2024
19.01.2024
20.01.2024
22.01.2024
24.01.2024
25.01.2024 | | | 2. | FAULT
CALCULATION | 10 | 2.1 Symmetrical faults on 3-phase system. 2.2 Limitation of fault current. 2.3 Percentage Reactance. 2.4 Percentage Reactance and Base KVA. 2.5 Short – circuit KVA 2.6 Reactor control of short circuit currents. 2.7 Location of reactors. 2.8 Steps for symmetrical Fault calculations. 2.9 Solve numerical problems on | 31.01.2024
TO
10.02.2024 | 2.3 | | 31.01.2024
01.02.2024
02.02.2024
03.02.2024
05.02.2024
06.02.2024
07.02.2024
08.02.2024
09.02.2024
10.02.2024 | | | | | | symmetrical fault. | | | Fault calculations. 2.9 Solve numerical problems on symmetrical fault. | | | |---|------------------|----|---|--------------------------------|---|---|--|--| | 3 | FUSES | 06 | 3.1 Desirable characteristics of fuse element. 3.2 Fuse Element materials. 3.3 Types of Fuses and important terms used for fuses. 3.4 Low and High voltage fuses. 3.5 Current carrying capacity of fuse element. 3.6 Difference Between a Fuse and Circuit Breaker. | 12.02.2024
TO
19.02.2024 | 3.2 | 3.1 Desirable characteristics of fuse element. 3.2 Fuse Element materials. 3.3 Types of Fuses and important terms used for fuses. 3.4 Low and High voltage fuses. 3.5 Current carrying capacity of fuse element. 3.6 Difference Between a Fuse and Circuit Breaker. | 12.02.2024
13.02.2024
15.022024
16.02.2024
17.02.2024
19.02.2024 | | | 4 | CIRCUIT BREAKERS | 10 | 4.1 Definition and principle of Circuit Breaker. 4.2 Arc phenomenon and principle of Arc Extinction. 4.3 Methods of Arc Extinction. 4.4 Definitions of Arc voltage, Restriking voltage and Recovery voltage. 4.5 Classification of circuit Breakers. 4.6 Oil circuit Breaker and its classification. 4.7 Plain brake oil circuit breaker. 4.8 Arc control oil circuit breaker. 4.10 Maintenance of oil circuit breaker. 4.11 Air-Blast circuit breaker and its classification. 4.12 Sulphur Hexa-fluoride (SF6) circuit breaker. 4.13 Vacuum circuit breakers. 4.14 Switchgear component. 4.15 Problems of circuit interruption. 4.16 Resistance switching. 4.17 Circuit Breaker Rating. | 20.02.2024
TO
01.03.2024 | 4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17 | 4.1 Definition and principle of Circuit Breaker. 4.2 Arc phenomenon and principle of Arc Extinction. 4.3 Methods of Arc Extinction. 4.4 Definitions of Arc voltage, Re-striking voltage and Recovery voltage. 4.5 Classification of circuit Breakers. 4.6 Oil circuit Breaker and its classification. 4.7 Plain brake oil circuit breaker 4.8 Arc control oil circuit breaker. 4.9 Low oil circuit breaker. 4.10 Maintenance of oil circuit breaker. 4.11 Air-Blast circuit | 20.02.2024
21.02.2024
22.02.2024
23.02.2024
24.02.2024
26.02.2024
27.02.2024
28.02.2024
29.02.2024
01.03.2024 | | | | | | | | | breaker and its classification. 4.12 Sulphur Hexafluoride (SF6) circuit breaker. 4.13 Vacuum circuit breakers. 4.14 Switchgear component. 4.15 Problems of circuit interruption. 4.16 Resistance switching. 4.17 Circuit Breaker Rating. | | |---|-------------------|----|---|--------------------------------|-----|--|--| | 5 | PROTECTIVE RELAYS | 08 | 5.1 Definition of Protective Relay. 5.2 Fundamental requirement of protective relay. 5.3 Basic Relay operation 5.3.1. Electromagnetic Attraction type 5.4 Definition of following important terms 5.5 Definition of following important terms. 5.5.1. Pick-up current. 5.5.2. Current setting. 5.5.3. Plug setting Multiplier. 5.6 Classification of functional relays 7 Induction type over current relay (Non-directional) 8 Induction type directional power relay. 9 Induction type directional over current relay. 10 Differential relay 10.1. Current differential relay 10.2. Voltage balance differential relay. 11 Types of protection | 02.03.2024
TO
14.03.2024 | 5.2 | Relay. 5.2 Fundamental requirement of protective relay. 5.3 Basic Relay operation 5.3.1. Electromagnetic Attraction type | | | 6 | PROTECTION OF ELECTRICAL POWER EQUIPMENT AND LINES | 06 | 6.1 Protection of alternator. 6.2 Differential protection of alternators. 6.3 Balanced earth fault protection. 6.4 Protection systems for transformer. 6.5 Buchholz relay. 6.6 Protection of Bus bar. 6.7 Protection of Transmission line. 6.8 Different pilot wire protection (Merzprice voltage Balance system) 6.9 Explain protection of feeder by over current and earth fault relay. | 21.03.2024 | 6.2 | 5.10 Differential relay 5.10.1. Current differential relay 5.10.2. Voltage balance differential relay. 5.11 Types of protection 6.1 Protection of alternator. 6.2 Differential protection of alternators. 6.3 Balanced earth fault protection. 6.4 Protection systems for transformer. 6.5 Buchholz relay. 6.6 Protection of Bus bar. 6.7 Protection of Transmission line. 6.8 Different pilot wire protection (Merz-price voltage Balance system) 6.9 Explain protection of feeder by over current and earth fault relay. | 15.03.2024
16.03.2024
18.02.2024
19.03.2024
20.03.2024
21.03.2024 | | |---|--|----|---|--------------------------------|-----|--|--|--| | 7 | PROTECTION AGAINST
OVER VOLTAGE AND
LIGHTING | 08 | 7.1. Voltage surge and causes of over voltage. 7.2. Internal cause of over voltage. 7.3. External cause of over voltage (lighting) 7.4. Mechanism of lightning discharge. 7.5. Types of lightning strokes. 7.6. Harmful effect of lightning. 7.7. Lightning arresters and Type of lightning Arresters. 7.7.1. Rod-gap lightning arrester. 7.7.2. Horn-gap arrester. 7.7.3. Valve type arrester. 7.8. Surge Absorber | 22.03.2024
TO
04.04.2024 | | 7.1. Voltage surge and causes of over voltage. 7.2. Internal cause of over voltage. 7.3. External cause of over voltage (lighting) 7.4. Mechanism of lightning discharge. 7.5. Types of lightning strokes. 7.6. Harmful effect of lightning. 7.7. Lightning arresters and Type of lightning Arresters. 7.7.1. Rod-gap lightning arrester. 7.7.2. Horn-gap arrester. 7.7.3. Valve type arrester. 7.8. Surge Absorber | 22.03.2024
23.03.2024
27.03.2024
28.03.2024
30.03.2024
02.04.2024
03.04.2024
04.04.2024 | | | 8 | STATIC RELAY: | 06 | 8. 1 Advantage of static relay. | 05.04.2024 | 8.1 | 8. 1 Advantage of static relay. | 05.04.2024 | | |---|---------------|----|--|------------|-----|---------------------------------|------------|--| | | | | 8. 2 Instantaneous over current relay. | TO | 8.2 | 8. 2 Instantaneous over | 06.04.2024 | | | | | | 8. 3 Principle of IDMT relay. | 16.04.2024 | | | 08.04.2024 | | | | | | | | | 8. 3 Principle of IDMT relay. | 09.04.2024 | | | | | | | | | | 10.04.2024 | | | | | | | | | | 12.04.2024 | | | | | | | | | | 13.04.2024 | | | | | | | | | | 15.04.2024 | | | | | | | | | | 16.04.2024 | | | | | | | | | | | | Gandhi School of Engg. Berhampur (Gm.) HOD