SUBJECT:ELECTRICAL MACHINE SEMESTER:4TH PREPARED BY: DEBASHRI PATNAIK ## 1ST CHAPTER- ELECTRICAL MATERIAL # Insulator - # SEMICONDUCTOR MATERIALS | Material | Example | ρ (Ω m) | |----------------|-----------|-----------| | Conductor | Copper | 10-6 | | Semi-conductor | Germanium | 0.5 | | Semi-conductor | Silicon | 500 | | Insulator | Mica | 10^{10} | ## **UNITS** Resistivity, ρ is given by: $\rho = (RA)/L = \Omega m^2 / m = \Omega m$ Conductivity, G is given by: $G = 1/\rho = \Omega^{-1}m^{-1} = S$ (Siemens)₁ #### Insulating material **Insulating Materials** # **Dielectric material** ## Magnetic material # 2ND CHAPTER-D.C GENERATOR #### **DC GENERATOR** #### Flow of current © Byjus.com 3RD CHAPTER-D. C. MOTORS 4TH CHAPTER-AC CIRCUITS $$V = \sqrt{(IR)^2 + (IX_L)^2}$$ $$I = \frac{V}{(R)^2 + (X_L)^2} = \frac{V}{Z}$$ where $Z = \sqrt{(R)^2 + (X_L)^2}$ is called impedance $$\phi = \tan^{-1} \frac{X_L}{R}$$ Power, P = VI cos ϕ # 5TH CHAPTER-SINGLE PHASE TRANSFORMER # 6TH CHAPTER- THREEPHASEINDUCTIONMOTORS 7^{TH} CHAPTER-SINGLEPHASEINDUCTIONMOTORS #### **AUTO TRANSFORMER** # WHAT IS AUTOTRANSFORMER? Types, Starting, Efficiency, Applications #### **INSTRUMENT TRANSFORMERS** 8^{TH} CHAPTER-A L T ERN A TO R