

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

UNIT –I

I. INTRODUCTION TO JAVA

What is Java

Java is a high Level programming language and it is also called as a
platform. Java is a secured and robust high level object-oriented
programming language.

Platform: Any software or hardware environment in which a program runs
is known as a platform. Java has its own runtime environment (JRE) and
API so java is also called as platform.

Java fallows the concept of Write Once, Run Anywhere.

Application of java

1. Desktop Applications
2. Web Applications
3. Mobile
4. Enterprise Applications
5. Smart Card
6. Embedded System
7. Games
8. Robotics etc

History of Java

James Gosling, Patrick Naughton and Mike Sheridan initiated the Java
language project in 1991. Team of sun engineers designed for small,
embedded systems in electronic appliances like set-top boxes. Initially it was
called "Greentalk" later it was called Oak .

Java is an open source software produced by Sunmicro system under the

terms of the GNU General Public License (GPL) .

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Features of Java:

 Object Oriented – Java implements basic concepts of Object oriented
programming System (OOPS) ie Object, Class, Inheritance,
Polymorphism, Abstraction, Encapsulation. In Java, everything is an
Object. Java can be easily extended since it is based on the Object
model.

 Platform Independent − Unlike many other programming languages
including C and C++, when Java is compiled, it is not compiled into
platform specific machine, rather into platform independent byte code.
This byte code is distributed over the web and interpreted by the
Virtual Machine (JVM) on whichever platform it is being run on.

 Simple – Java fallows the basic Syntax of C,C++. If you understand
the basic concept of OOPS then it is easy to master in java.

 Secure − With Java's secure feature it enables to develop virus-free,
tamper-free systems. Authentication techniques are based on public-
key encryption.

 Architecture-neutral − Java compiler generates an architecture-
neutral object file format, which makes the compiled code executable
on many processors, with the presence of Java runtime system.

 Portable − Being architecture-neutral and having no implementation
dependent aspects of the specification makes Java portable. Compiler
in Java is written in ANSI C with a clean portability boundary, which
is a POSIX subset.

 Robust − Java makes an effort to eliminate error prone situations by
emphasizing mainly on compile time error checking and runtime
checking.

 Multithreaded − With Java's multithreaded feature In java we can
write programs that can perform many tasks simultaneously. This
design feature allows the developers to construct interactive
applications that can run smoothly.

 Interpreted − Java byte code is translated on the fly to native
machine instructions and is not stored anywhere. The development
process is more rapid and analytical since the linking is an
incremental and light-weight process.

 High Performance − With the use of Just-In-Time compilers, Java
enables high performance.

 Distributed − Java is designed for the distributed environment of the
internet.

 Dynamic − Java is considered to be more dynamic than C or C++
since it is designed to adapt to an evolving environment. Java

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

programs can carry extensive amount of run-time information that
can be used to verify and resolve accesses to objects on run-time.

Object Oriented Programming System(OOPS)

Object means a real word entity such as pen, chair, table etc. Object-
Oriented Programming is a methodology or paradigm to design a program
using classes and objects. It simplifies the software development and
maintenance by providing some concepts:

 Object
 Class
 Inheritance
 Polymorphism
 Abstraction
 Encapsulation

If any language fallows the OOPS concepts that language we call it as object
oriented language

Procedure to write simple java Program

To write a java program First we have install the JDK.

To create a simple java program, you need to create a class that contains
main method. Let's understand the requirement first.

 install the JDK and install it.
 set path of the jdk
 create the java program
 compile and run the java program

Setting Up the Path for Windows

Assuming you have installed Java in c:\Program Files\java\jdk directory −

 Right-click on 'My Computer' and select 'Properties'.
 Click the 'Environment variables' button under the 'Advanced' tab.
 Now, alter the 'Path' variable so that it also contains the path to the

Java executable. Example, if the path is currently set to
'C:\WINDOWS\SYSTEM32', then change your path to read
'C:\WINDOWS\SYSTEM32;c:\Program Files\java\jdk\bin'.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Setting Up the Path for Linux, UNIX, Solaris, FreeBSD

Environment variable PATH should be set to point to where the Java
binaries have been installed. Refer to your shell documentation, if you have
trouble doing this. For Example if you use bash as your shell, then you
would add the following line to the end of your '.bashrc: export PATH =
/path/to/java:$PATH'

Popular Java Editors

 Notepad − On Windows machine, you can use any simple text editor

like Notepad (Recommended for this tutorial), TextPad.
 Netbeans − A Java IDE that is open-source and free which can be

downloaded from Eclipse − A Java IDE developed by the eclipse open-
source community and can be downloaded from

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is an abstract machine. It is a specification that
provides runtime environment in which java bytecode can be executed.
JVMs are available for many hardware and software platforms (i.e. JVM is
platform dependent).

What is JVM

It is:

1. A specification where working of Java Virtual Machine is specified.
But implementation provider is independent to choose the algorithm.
Its implementation has been provided by Sun and other companies.

2. An implementation Its implementation is known as JRE (Java
Runtime Environment).

3. Runtime Instance Whenever you write java command on the
command prompt to run the java class, an instance of JVM is created.

What it does

The JVM performs following operation:

 Loads code
 Verifies code
 Executes code
 Provides runtime environment

JVM provides definitions for the:

 Memory area
 Class file format

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

 Register set
 Garbage-collected heap
 Fatal error reporting etc.

JAVA VIRTUAL MACHINE

Java’s Magic: The Bytecode output of a Java compiler is not executable
code. Rather, it is bytecode. Bytecode is a highly optimized set of
instructions designed to be executed by the Java run-time system, which is
called the Java Virtual Machine (JVM).

Java complier translates the java source code into byte code or intermediate
code ,not the executable file .JVM take the byte code and convert into
executable code corresponding to Operating system

Because of the above feature java is portable

II. CLASS, OBJECT AND METHODS

Java program is a collection of objects that communicate via invoking each
other's methods. We now briefly look into class, object, methods, and
instance variables.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Class − A class can be defined as a template/blueprint that describes the
behavior/state that the object of its type supports.

A class is declared by use of the class keyword. A simplified general form of
a class definition is shown here:

class classname

{

type instance-variable1; type instance-variable2;

// ... type instance-variableN;

type methodname1(parameter-list)

{ // body of method }

type methodname2(parameter-list)

{ // body of method }

// ... type methodnameN(parameter-list)

{ // body of method } }

The data, or variables, defined within a class are called instance variables.
The code is contained within methods. Collectively, the methods and
variables defined within a class are called members of the class. In most
classes, the instance variables are acted upon and accessed by the methods
defined for that class

Simple Class

Class Sample

{

int len, float ht

void get()

{ // body

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

} }

Here a class Sample contains two variable len and ht

Object in Java

Object is the physical as well as logical entity whereas class is the logical
entity only.

An object has three characteristics:

 state: represents data (value) of an object.
 behavior: represents the behavior (functionality) of an object such as

deposit, withdraw etc.
 identity: Object identity is typically implemented via a unique ID. The

value of the ID is not visible to the external user. But, it is used
internally by the JVM to identify each object uniquely.

Object is an instance of a class. Class is a template or blueprint from
which objects are created. So object is the instance(result) of a class.

Object Definitions:

 Object is a real world entity. Object is a run time entity.
 Object is an entity which has state and behavior.
 Object is an instance of a class.

Sample s=new Sample() here s is an object for the class Sample

new operator is used to create an object

Methods − A method is basically a behavior. A class can contain many
methods. It is in methods where the logics are written, data is manipulated
and all the actions are executed.

Let's create the Simple java program:

1. class Sample{
2. public static void main(String args[]){
3. System.out.println("How are you ");
4. }
5. }

save this file as Sample.java

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

To compile: javac Sample.java

To execute: java Sample

Java Identifiers

All Java components require names. Names used for classes, variables, and
methods are called identifiers.

In Java, there are several points to remember about identifiers. They are as
follows −

 All identifiers should begin with a letter (A to Z or a to z), currency

character ($) or an underscore (_).
 After the first character, identifiers can have any combination of

characters.
 A key word cannot be used as an identifier.
 Most importantly, identifiers are case sensitive.
 Examples of legal identifiers: age, $salary, _value, 1_value.
 Examples of illegal identifiers: 123abc, -salary.

Java Modifiers: There are two categories of modifiers −

 Access Modifiers − default, public , protected, private
 Non-access Modifiers − final, abstract, strictfp

III DATA TYPES

There are two data types available in Java −

 Primitive Data Types
 Non Primitive Types

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Primitive Data Types

There are eight primitive data types supported by Java. Primitive data types
are predefined by the language and named by a keyword. Let us now look
into the eight primitive data types in detail.

byte

 Byte data type is an 8-bit signed two's complement integer
 Minimum value is -128 (-2^7)
 Maximum value is 127 (inclusive)(2^7 -1)
 Default value is 0
 Byte data type is used to save space in large arrays, mainly in place of

integers, since a byte is four times smaller than an integer.
 Example: byte a = 100, byte b = -50

short

 Short data type is a 16-bit signed two's complement integer
 Minimum value is -32,768 (-2^15)
 Maximum value is 32,767 (inclusive) (2^15 -1)
 Short data type can also be used to save memory as byte data type. A

short is 2 times smaller than an integer
 Default value is 0.
 Example: short s = 10000, short r = -20000

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

int

 Int data type is a 32-bit signed two's complement integer.
 Minimum value is - 2,147,483,648 (-2^31)
 Maximum value is 2,147,483,647(inclusive) (2^31 -1)
 Integer is generally used as the default data type for integral values

unless there is a concern about memory.
 The default value is 0
 Example: int a = 100000, int b = -200000

long

 Long data type is a 64-bit signed two's complement integer
 Minimum value is -9,223,372,036,854,775,808(-2^63)
 Maximum value is 9,223,372,036,854,775,807 (inclusive)(2^63 -1)
 This type is used when a wider range than int is needed
 Default value is 0L
 Example: long a = 100000L, long b = -200000L

float

 Float data type is a single-precision 32-bit IEEE 754 floating point
 Float is mainly used to save memory in large arrays of floating point

numbers
 Default value is 0.0f
 Float data type is never used for precise values such as currency
 Example: float f1 = 234.5f

double

 double data type is a double-precision 64-bit IEEE 754 floating point
 This data type is generally used as the default data type for decimal

values, generally the default choice
 Double data type should never be used for precise values such as

currency
 Default value is 0.0d
 Example: double d1 = 123.4

boolean

 boolean data type represents one bit of information
 There are only two possible values: true and false
 This data type is used for simple flags that track true/false conditions
 Default value is false
 Example: boolean one = true

char

 char data type is a single 16-bit Unicode character

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

 Minimum value is '\u0000' (or 0)
 Maximum value is '\uffff' (or 65,535 inclusive)
 Char data type is used to store any character
 Example: char letterA = 'A'

Java Literals

A literal is a source code representation of a fixed value. Literals can be
assigned to any primitive type variable.

byte a = 68; char a = 'A'

byte, int, long, and short can be expressed in decimal(base 10),
hexadecimal(base 16) or octal(base 8) number systems as well.

Prefix 0 is used to indicate octal, and prefix 0x indicates hexadecimal when
using these number systems for literals. For example −

int decimal = 100; int octal = 0144; int hexa = 0x64;

String literals in Java are specified like they are in most other languages by
enclosing a sequence of characters between a pair of double quotes.
Examples of string literals are −

Example
"Hello World" "two\nlines" "\"This is in quotes\""

String and char types of literals can contain any Unicode characters. For
example − char a = '\u0001'; String a = "\u0001";

Java language supports few special escape sequences for String and char

Notation Character represented

\n Newline (0x0a)

\r Carriage return (0x0d)

\f Formfeed (0x0c)

\b Backspace (0x08)

\s Space (0x20)

\t Tab

\" Double quote

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

\' Single quote

\\ Backslash

\ddd Octal character (ddd)

\uxxxx Hexadecimal UNICODE character (xxxx)

Java Variable Example: Add Two Numbers

1. class Sample{
2. public static void main(String[] args){
3. int i=50;
4. int j=60;
5. int k=a+b;
6. System.out.println(k);
7. } }

Java Variable Example: Widening

1. class Sample{
2. public static void main(String[] args){
3. int j=10;
4. float k=a;
5. System.out.println(i);
6. System.out.println(j);
7. }}

Unicode System

Unicode is a universal international standard character encoding that is

capable of representing most of the world's written languages.

Before Unicode, there were many language standards:

 ASCII (American Standard Code for Information Interchange) for the
United States.

 ISO 8859-1 for Western European Language.
 KOI-8 for Russian.
 GB18030 and BIG-5 for chinese, and so on.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Tokens

Java Tokens are the smallest individual building block or smallest unit of a

Java program, it is used by the Java compiler for constructing expressions

and statements. Java program is collection different types of tokens,

comments, and white spaces.

Java Supports Five Types of Tokens:

 Reserved Keywords Identifiers Literals
 Operators Separators

Java Keywords can not be used as a variable name.

Abstract Assert boolean break

Byte Case catch char

Class Const continue default

Do Double else enum

extends Final finally float

For Goto if implements

Import Instanceof int interface

Long Native new package

private Protected public return

Short Static strictfp super

Switch synchronized this throw

throws Transient try void

volatile While true false

Null

Variable

Variable is name of reserved area allocated in memory. In other words, it is
a name of memory location. It is a combination of "vary + able" that means
its value can be changed.

There are three types of variables in java:

 local variable
 instance variable
 static variable

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1) Local Variable

A variable which is declared inside the method is called local variable.

2) Instance Variable

A variable which is declared inside the class but outside the method, is
called instance variable . It is not declared as static.

3) Static variable

A variable that is declared as static is called static variable. It cannot be
local.

We will have detailed learning of these variables in next chapters.

IV OPERATORS & IF, Switch, loop Statements

Operators in java

Operator in java is a symbol that is used to perform operations. For
example: +, -, *, / etc.

There are many types of operators in java which are given below:

 Unary Operator,
 Arithmetic Operator,
 shift Operator,
 Relational Operator,
 Bitwise Operator,
 Logical Operator,
 Ternary Operator and
 Assignment Operator.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java If-else Statement

The Java if statement is used to test the condition. It checks boolean
condition: true or false. There are various types of if statement in java.

 if statement if-else statement
 if-else-if ladder nested if statement

Java IF Statement

The Java if statement tests the condition. It executes the if block if condition
is true. The following is the syntax

1. if(condition){
2. //code to be executed
3. }

1. public class Example {
2. public static void main(String[] args) {
3. int k=35;
4. if(k>18){ System.out.print("Hello");
5. } } }

IF-else Statement

The if-else statement in java tests the condition. It executes the if block if
condition is true otherwise else block is executed.

Syntax:

1. if(condition){
2. //code if condition is true
3. }else{
4. //code if condition is false
5. }

public class Sample {
public static void main(String[] args) {

int n=23;
if(number%2==0){

System.out.println("even ");
}else{

System.out.println("odd ");
} }

}

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

IF-else-if ladder Statement

The if-else-if ladder statement executes one condition from multiple
statements.

Syntax:

1. if(condition1){
2. //code to be executed if condition1 is true
3. }else if(condition2){
4. //code to be executed if condition2 is true
5. }
6. else if(condition3){
7. //code to be executed if condition3 is true
8. }
9. ...
10. else{
11. //code to be executed if all the conditions are false
12. }

1. public class Simple {
2. public static void main(String[] args) {
3. int marks=70;
4.
5. if(marks<40){
6. System.out.println("FAIL");
7. }
8. else if(marks>=40 && marks<50){
9. System.out.println("D grade");
10. }
11. else if(marks>=50 && marks<60){
12. System.out.println("C grade");
13. }
14. else if(marks>=60 && marks<70){
15. System.out.println("B grade");
16. }
17. else if(marks>=70 && marks<80){
18. System.out.println("A grade");
19. }else if(marks>=80 && marks<100){
20. System.out.println("A+ grade");
21. }else{
22. System.out.println("Invalid!");
23. }
24. }
25. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Switch Statement

The switch statement in java executes one statement from multiple
conditions. It is like if-else-if ladder statement.

Syntax:

1. switch(expression){
2. case value1:
3. //code to be executed;
4. break; //optional
5. case value2:
6. //code to be executed;
7. break; //optional
8.
9.
10. default:
11. code to be executed if all cases are not matched;
12. }

Example:

1. public class Sample {
2. public static void main(String[] args) {
3. int k=20;
4. switch(k){
5. case 10: System.out.println("10");break;
6. case 20: System.out.println("20");break;
7. case 30: System.out.println("30");break;
8. default:System.out.println("Not in 10, 20 or 30");
9. } }
10. }

Java For Loop

The Java for loop is used to iterate a part of the program several times. If the
number of iteration is fixed, it is recommended to use for loop.

There are three types of for loop in java.

 Simple For Loop
 For-each or Enhanced For Loop
 Labeled For Loop

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Simple For Loop

The simple for loop is same as C/C++. We can initialize variable, check
condition and increment/decrement value.

Syntax:

1. for(initialization;condition;incr/decr){
2. //code to be executed
3. }

Example:

1. public class Sample {
2. public static void main(String[] args) {
3. for(int i=1;i<=20;i++){
4. System.out.println(i);
5. }
6. }
7. }

Java While Loop

The Java while loop is used to iterate a part of the program several times. If
the number of iteration is not fixed, it is recommended to use while loop.

Syntax:

1. while(condition){
2. //code to be executed
3. }

1. public class Sample {
2. public static void main(String[] args) {
3. int j=1;
4. while(j<=10){
5. System.out.println(j);
6. j++;
7. }
8. } }

Java do-while Loop

The Java do-while loop is used to iterate a part of the program several times.
If the number of iteration is not fixed and you must have to execute the loop
at least once, it is recommended to use do-while loop.The Java do-while loop
is executed at least once because condition is checked after loop body.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Syntax: do{ /code to be executed

}while(condition);

public class Example {

public static void main(String[] args) {

int j=1;

do{ System.out.println(j);

j++;

}while(j<=10);

} }

Java Break Statement

The Java break is used to break loop or switch statement. It breaks the
current flow of the program at specified condition. In case of inner loop, it
breaks only inner loop.

Example:

1. public class Simple {
2. public static void main(String[] args) {
3. for(int i=1;i<=10;i++){
4. if(i==5){
5. break;
6. }
7. System.out.println(i);
8. }
9. }
10. }

Java Continue Statement

The Java continue statement is used to continue loop. It continues the
current flow of the program and skips the remaining code at specified
condition. In case of inner loop, it continues only inner loop.

Example:

1. public class Sample {

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

2. public static void main(String[] args) {
3. for(int k=1;k<=10;k++){
4. if(k==5){
5. continue;
6. }
7. System.out.println(k);
8. }
9. }
10. }

V ARRAYS & COMMENTS in JAVA

Array in java

Array is group of elements of similar types occupying contiguous memory
locations

Advantage of Java Array

 Code Optimization Random access

Disadvantage of Java Array is it has fixed size it cannot grow

There are two types of array in java .

 Single Dimensional Array
 Multidimensional Array

Single Dimensional Array in java
Syntax to Declare an Array in java

1. datatype[] arrayname (or)
2. datatype []arrayname; (or)
3. datatype arrayname[];

Array initialization in java

1. arrayname=new datatype[size];

Example

Let's see the simple example of java array, where we are going to declare,
instantiate, initialize and traverse an array.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. class Testarray{
2. public static void main(String args[]){
3. int a[]=new int[5];//declaration and instantiation
4. a[0]=10; a[1]=20; a[2]=70; a[3]=40; a[4]=50;
5. for(int i=0;i<a.length;i++)//length is the property of array
6. System.out.println(a[i]);
7. }}

Declaration, Instantiation and Initialization of Java Array

We can declare, instantiate and initialize the java array together by:

1. int a[]={33,3,4,5};//declaration, instantiation and initialization

Let's see the simple example to print this array.

1. class Testarray1{
2. public static void main(String args[]){
3.
4. int a[]={33,3,4,5};//declaration, instantiation and initialization
5.
6. //printing array
7. for(int i=0;i<a.length;i++)//length is the property of array
8. System.out.println(a[i]);
9.
10. }}

Multidimensional array in java

In such case, data is stored in row and column based index (also known as
matrix form).

Syntax to Declare Multidimensional Array in java

1. dataType[][] arrayRefVar; (or) dataType [][]arrayRefVar; (or)
2. dataType arrayRefVar[][]; (or) dataType []arrayRefVar[];

Example to instantiate Multidimensional Array in java

1. int[][] arr=new int[3][3];//3 row and 3 column

Example to initialize Multidimensional Array in java

1. arr[0][0]=1;
2. arr[0][1]=2;
3. arr[0][2]=3;
4. arr[1][0]=4;
5. arr[1][1]=5;
6. arr[1][2]=6;

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

7. arr[2][0]=7;
8. arr[2][1]=8;
9. arr[2][2]=9;

Example of Multidimensional java array

Let's see the simple example to declare, instantiate, initialize and print the
2Dimensional array.

1. class Ex{
2. public static void main(String args[]){
3.
4. //declaring and initializing 2D array
5. int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
6.
7. //printing 2D array
8. for(int i=0;i<3;i++){
9. for(int j=0;j<3;j++){
10. System.out.print(arr[i][j]+" ");
11. }
12. System.out.println();
13. }
14. } }

Java Comments

The java comments are statements that are not executed by the compiler
and interpreter. The comments can be used to provide information or
explanation about the variable, method, class or any statement. It can also
be used to hide program code for specific time.

Types of Java Comments

There are 3 types of comments in java.

1. Single Line Comment
2. Multi Line Comment
3. Documentation Comment

1) Java Single Line Comment

The single line comment is used to comment only one line.

Syntax:

1. //This is single line comment

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Example:

1. public class Sample{
2. public static void main(String[] args) {
3. int j=10;//Here, i is a variable
4. System.out.println(j);
5. }
6. }

2) Java Multi Line Comment

The multi line comment is used to comment multiple lines of code.

Syntax:

1. /*
2. This
3. is
4. multi line
5. comment
6. */

Example:

1. public class CommentExample2 {
2. public static void main(String[] args) {
3. /* Let's declare and
4. print variable in java. */
5. int j=10;
6. System.out.println(j);
7. }
8. }

3) Java Documentation Comment

The documentation comment is used to create documentation API. To create
documentation API, you need to use javadoc tool.

Syntax:

1. /**
2. This
3. is
4. documentation
5. comment

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

6. */

VI CONSTRUCTORS

Constructor is special member function ,it has the same name as class
name. It is called when an instance of object is created and memory is
allocated for the object.

It is a special type of method which is used to initialize the object

Rules for creating java constructor

There are basically two rules defined for the constructor.

1. Constructor name must be same as its class name
2. Constructor must have no explicit return type

Types of java constructors

There are two types of constructors in java:

1. Default constructor (no-arg constructor)
2. Parameterized constructor

A constructor is called "Default Constructor" when it doesn't have any
parameter.

class Sample{
Sample()
{

System.out.println("Sample is created");
}

public static void main(String args[])
{

Sample b=new Sample();
} }

A constructor which has a specific number of parameters is called
parameterized constructor.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. class Student4{
2. int id;
3. String name;
4. Student4(int i,String n){
5. id = i;
6. name = n;
7. }
8. void display(){System.out.println(id+" "+name);}
9.
10. public static void main(String args[]){
11. Student4 s1 = new Student4(111,"Karan");
12. Student4 s2 = new Student4(222,"Aryan");
13. s1.display();
14. s2.display();
15. }
16. }

Difference between constructor and method in java

There are many differences between constructors and methods. They are
given below.

Java Constructor Java Method

Constructor is used to initialize the state of Method is used to expose
an object. behaviour of an object.

Constructor must not have return type.
Method must have return

type.

Constructor is invoked implicitly. Method is invoked explicitly.

The java compiler provides a default
constructor if you don't have any
constructor.

Constructor name must be same as the
class name.

Method is not provided by
compiler in any case.

Method name may or may not
be same as class name.

Java static keyword

The static keyword in java is used for memory management mainly. We can
apply java static keyword with variables, methods, blocks and nested class.
The static keyword belongs to the class than instance of the class.

The static can be:

1. variable (also known as class variable)
2. method (also known as class method)

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3. block
4. nested class

1) Java static variable

If you declare any variable as static, it is known static variable.

 The static variable can be used to refer the common property of all
objects (that is not unique for each object) e.g. company name of
employees,college name of students etc.

 The static variable gets memory only once in class area at the time of
class loading.

Advantage of static variable: It makes your program memory
efficient (i.e it saves memory).

class Stud{
int rollno;
String name;
static String college ="ITS";
Stud(int r,String n){
rollno = r;
name = n;
}

void display (){System.out.println(rollno+" "+name+" "+college);}

public static void main(String args[]){
Stud s1 = new Stud(11,"Krishna");
Stud s2 = new Stud(22,"Rama");
s1.display();
s2.display();
} }

2) Java static method

If you apply static keyword with any method, it is known as static method.

 A static method belongs to the class rather than object of a class.
 A static method can be invoked without the need for creating an

instance of a class.
 static method can access static data member and can change the

value of it.

Example of static method

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. //Program of changing the common property of all objects(static field).

2.
3. class Stud{
4. int rollno;
5. String name;
6. static String college = "BEC";
7.
8. static void change(){
9. college = "JBIEIT";
10. }
11. Stud(int r, String n){
12. rollno = r;
13. name = n;
14. }
15.
16. void display (){System.out.println(rollno+" "+name+" "+college

);}
17. public static void main(String args[]){
18. Stud.change();
19. Stud s1 = new Stud (11,"Kiran");
20. Stud s2 = new Stud (22,"Arjun");
21. Stud s3 = new Stud (33,"srinu");
22. s1.display();
23. s2.display();
24. s3.display();
25. }
26. }

this keyword in java

There can be a lot of usage of java this keyword. In java, this is a reference
variable that refers to the current object.

Usage of java this keyword

Here is given the 6 usage of java this keyword.

1. this can be used to refer current class instance variable.
2. this can be used to invoke current class method (implicitly)
3. this() can be used to invoke current class constructor.
4. this can be passed as an argument in the method call.
5. this can be passed as argument in the constructor call.
6. this can be used to return the current class instance from the method.

1) this: to refer current class instance variable

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

The this keyword can be used to refer current class instance variable. If
there is ambiguity between the instance variables and parameters, this
keyword resolves the problem of ambiguity.

class Student{
int rollno;
String name;
float fee;
Student(int rollno,String name,float fee){
this.rollno=rollno;
this.name=name;
this.fee=fee;
}
void display(){System.out.println(rollno+" "+name+" "+fee);}
}
class TestThis2{
public static void main(String args[]){
Student s1=new Student(111,"ankit",5000f);
Student s2=new Student(112,"sumit",6000f);
s1.display();
s2.display(); }}

2) this: to invoke current class method

You may invoke the method of the current class by using the this keyword.
If you don't use the this keyword, compiler automatically adds this keyword
while invoking the method

1. class B{
2. void m(){System.out.println("hello m");}
3. void n(){
4. System.out.println("hello n");
5. //m();//same as this.m()
6. this.m();
7. }
8. }
9. class TestThis4{
10. public static void main(String args[]){
11. B b=new B();
12. b.n();
13. }}

3) this() : to invoke current class constructor

The this() constructor call can be used to invoke the current class
constructor. It is used to reuse the constructor. In other words, it is used for
constructor chaining.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Calling default constructor from parameterized constructor:

1. class B{
2. B(){System.out.println("hello ");}
3. B(int x){
4. this();
5. System.out.println(x);
6. }
7. }
8. class Sample{
9. public static void main(String args[]){
10. B a=new B(10);
11. }}

1. class Student{
2. int rollno;
3. String name,course;
4. float fee;
5. Student(int rollno,String name,String course){
6. this.rollno=rollno;
7. this.name=name;
8. this.course=course;
9. }
10. Student(int rollno,String name,String course,float fee){
11. this(rollno,name,course);//reusing constructor
12. this.fee=fee;
13. }
14. void display(){System.out.println(rollno+" "+name+" "+course+" "

+fee);}
15. }
16. class SamplTest{
17. public static void main(String args[]){
18. Student s1=new Student(111,"ankit","java");
19. Student s2=new Student(112,"sumit","java",6000f);
20. s1.display();
21. s2.display();
22. }}

4) this: to pass as an argument in the method

The this keyword can also be passed as an argument in the method. It is
mainly used in the event handling. Let's see the example:

1. class S2{
2. void m(S2 obj){
3. System.out.println("method is invoked");
4. }
5. void p(){
6. m(this);

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

7. }
8. public static void main(String args[]){
9. S2 s1 = new S2();
10. s1.p();
11. }
12. }

5) this: to pass as argument in the constructor call

We can pass the this keyword in the constructor also. It is useful if we have
to use one object in multiple classes. Let's see the example:

1. class B{
2. A4 obj;
3. B(A4 obj){
4. this.obj=obj;
5. }
6. void display(){
7. System.out.println(obj.data);//using data member of A4 class
8. }
9. }
10.
11. class A4{
12. int data=10;
13. A4(){
14. B b=new B(this);
15. b.display();
16. }
17. public static void main(String args[]){
18. A4 a=new A4();
19. }
20. }

6) this keyword can be used to return current class instance

We can return this keyword as an statement from the method. In such case,
return type of the method must be the class type (non-primitive). Let's see
the example:

Syntax of this that can be returned as a statement

1. return_type method_name(){
2. return this;
3. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Example of this keyword that you return as a statement
from the method

1. class A{
2. A getA(){
3. return this;
4. }
5. void msg(){System.out.println("Hello java");}
6. }
7. class Test1{
8. public static void main(String args[]){
9. new A().getA().msg();
10. }
11. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

UNIT -II

VII. Inheritance

Inheritance can be defined as the procedure or mechanism of acquiring all
the properties and behavior of one class to another, i.e. acquiring the
properties and behavior of child class from the parent class. This concept
was built in order to achieve the advantage of creating a new class that gets
built upon an already existing class(es). It is mainly used for code reusability
within a Java program. The class that gets inherited taking the properties of
another class is the subclass or derived class or child class. Again, the class
whose properties get inherited is the superclass or base class or parent
class. The keyword extends is used to inherit the properties of the base
class to derived class. The structure of using this keyword looks something
like this:

class base
{

.....

.....
}
class derive extends base
{
.....
.....

}

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

class Person {
void teach() {
System.out.println("Teaching subjects");

} }

class Person extends Teacher {
void listen() {
System.out.println("Listening to teacher");

} }

class CheckForInheritance {
public static void main(String args[]) {

Person s1 = new Students();
s1.teach();
s1.listen();

}
}

In this type of inheritance, a derived class gets created from another derived
class and can have any number of levels.

class Teacher {
void teach() {
System.out.println("Teaching subject");

}
}
class Student extends Teacher {
void listen() {

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

System.out.println("Listening");
}

}
class homeTution extends Student {
void explains() {
System.out.println("Does homework");
}

}
class CheckForInheritance {
public static void main(String argu[]) {
homeTution h = new himeTution();
h.explains();
d.teach();
d.listen();

}
}

In this type of inheritance, there are more than 1 derived classes which get
created from one single base class.

class Teacher {
void teach() {
System.out.println("Teaching subject");

}
}
class Student extends Teacher {
void listen() {
System.out.println("Listening");
}

}
class Principal extends Teacher {
void evaluate() {
System.out.println("Evaluating");
}

}
class CheckForInheritance {
public static void main(String argu[]) {
Principal p = new Principal();
p.evaluate();
p.teach();
// p.listen(); will produce an error

}
}

Let us imagine a situation where there are three classes: A, B and C. The C
class inherits A and B classes. In case, class A and class B have a method
with same name and type and as a programmer, you have to call that

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

method from child class's (C) object, there-there will be ambiguity as which
method will be called either of A or of B class.

So Java reduces this hectic situation by the use of interfaces which
implements this concept and reduce this problem; as compile-time errors
are tolerable than runtime faults in the program.

VIII Polymorphism

The word polymorphism means having multiple forms. The term
Polymorphism gets derived from the Greek word where poly + morphos
where poly means many and morphos means forms.

Polymorphism is another special feature of object-oriented programming
(OOPs). The approach which lies beneath this concept is "single interface
with multiple implementations." This offers a single interface for controlling
access to a general class of actions.

Polymorphism can be achieved in two of the following ways:

 Method Overloading(Compile time Polymorphism)
 Method Overriding(Run time Polymorphism)

 Static Polymorphism is in other words termed as compile-time binding
or early binding.

 Static binding occurs at compile time. Method overloading is a case of
static binding and in this case binding of method call to its definition
happens at the time of compilation.

 To call an overloaded method in Java, it is must use the type and/or

the number of arguments to determine which version of the
overloaded method to actually call.

 The overloaded methods may have varied return types and the return
type single-handedly is insufficient to make out two versions of a
method.

 As and when Java compiler encounters a call to an overloaded
method, it simply executes the version of the method whose
parameters match the arguments used in the call.

 It permits the user to obtain compile time polymorphism with name
method name.

 An overloaded method is able to throw different kinds of exceptions.
 A method which is overloaded can contain different access modifiers.

Overloading method's argument lists might differ in:

 Number of parameters passed
 Data type of actual parameters
 Sequence of data type of actual parameters

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

class Mltply {
void mul(int a, int b) {
System.out.println("Sum of two=" + (a * b));

}

void mul(int a, int b, int c) {
System.out.println("Sum of three=" + (a * b * c));

}
}
class Polymorphism {
public static void main(String args[]) {
Mltply m = new Mltply();
m.mul(6, 10);
m.mul(10, 6, 5);

} }

Rules to method overriding

 Argument list: The argument list at the time of overriding method
need to be same as that of the method of the parent class. The data
types of the arguments along with their sequence must have to be
preserved as it is in the overriding method.

 Access Modifier: The Access Modifier present in the overriding
method (method of subclass) cannot be more restrictive than that of
an overridden method of the parent class.

 The private, static and final methods can't be overridden as they are
local to the class.

 Any method which is overriding is able to throw any unchecked
exceptions, in spite of whether the overridden method usually method
of parent class might throw an exception or not.

//method overriding
class parent {
public void work() {
System.out.println("Parent is under retirement from work.");

}
}
class child extends parent {
public void work() {
System.out.println("Child has a job");
System.out.println(" He is doing it well");

}
public static void main(String argu[]) {
child c1 = new child();
c1.work();

} }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Advantage of method overriding

One major advantage of method overriding is that a class can give its own
specific execution to an inherited method without having the modification in
the parent class (base class).

super keyword in java

The super keyword in java is a reference variable which is used to refer
immediate parent class object.

Whenever you create the instance of subclass, an instance of parent class is
created implicitly which is referred by super reference variable.

Usage of java super Keyword

1. super can be used to refer immediate parent class instance variable.
2. super can be used to invoke immediate parent class method.
3. super() can be used to invoke immediate parent class constructor.

1) super is used to refer immediate parent class instance variable.

We can use super keyword to access the data member or field of parent
class. It is used if parent class and child class have same fields.

1. class Animal{
2. String color="white";
3. }
4. class Dog extends Animal{
5. String color="black";
6. void printColor(){
7. System.out.println(color);//prints color of Dog class
8. System.out.println(super.color);//prints color of Animal class
9. }
10. }
11. class TestSuper1{
12. public static void main(String args[]){
13. Dog d=new Dog();
14. d.printColor();
15. }}

2) super can be used to invoke parent class method

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

The super keyword can also be used to invoke parent class method. It
should be used if subclass contains the same method as parent class. In
other words, it is used if method is overridden.

1. class Animal{
2. void eat(){System.out.println("eating...");}
3. }
4. class Dog extends Animal{
5. void eat(){System.out.println("eating bread...");}
6. void bark(){System.out.println("barking...");}
7. void work(){
8. super.eat();
9. bark();
10. }
11. }
12. class TestSuper2{
13. public static void main(String args[]){
14. Dog d=new Dog();
15. d.work();
16. }}

3) super is used to invoke parent class constructor.

The super keyword can also be used to invoke the parent class constructor.
Let's see a simple example:

1. class Animal{
2. Animal(){System.out.println("animal is created");}
3. }
4. class Dog extends Animal{
5. Dog(){
6. super();
7. System.out.println("dog is created");
8. }
9. }
10. class TestSuper3{
11. public static void main(String args[]){
12. Dog d=new Dog();
13. }}

1. class Person{
2. int id;
3. String name;
4. Person(int id,String name){
5. this.id=id;

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

6. this.name=name;
7. }
8. }
9. class Emp extends Person{
10. float salary;
11. Emp(int id,String name,float salary){
12. super(id,name);//reusing parent constructor
13. this.salary=salary;
14. }
15. void display(){System.out.println(id+" "+name+" "+salary);}
16. }
17. class TestSuper5{
18. public static void main(String[] args){
19. Emp e1=new Emp(1,"ankit",45000f);
20. e1.display();
21. }}

Method Overloading in Java

If a class has multiple methods having same name but different in
parameters, it is known as Method Overloading.

Advantage of method overloading

Method overloading increases the readability of the program.

Different ways to overload the method

There are two ways to overload the method in java

1. By changing number of arguments
2. By changing the data type

1) Method Overloading: changing no. of arguments

In this example, we have created two methods, first add() method performs
addition of two numbers and second add method performs addition of three
numbers.

In this example, we are creating static methods so that we don't need to
create instance for calling methods.

1. class Adder{
2. static int add(int a,int b){return a+b;}
3. static int add(int a,int b,int c){return a+b+c;}
4. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

5. class TestOverloading1{
6. public static void main(String[] args){
7. System.out.println(Adder.add(11,11));
8. System.out.println(Adder.add(11,11,11));
9. }}

2) Method Overloading: changing data type of arguments

In this example, we have created two methods that differs in data type. The
first add method receives two integer arguments and second add method
receives two double arguments.

1. class Adder{
2. static int add(int a, int b){return a+b;}
3. static double add(double a, double b){return a+b;}
4. }
5. class TestOverloading2{
6. public static void main(String[] args){
7. System.out.println(Adder.add(11,11));
8. System.out.println(Adder.add(12.3,12.6));
9. }}

Method Overriding in Java

If subclass (child class) has the same method as declared in the parent
class, it is known as method overriding in java.

In other words, If subclass provides the specific implementation of the
method that has been provided by one of its parent class, it is known as
method overriding.

Usage of Java Method Overriding

 Method overriding is used to provide specific implementation of a
method that is already provided by its super class.

 Method overriding is used for runtime polymorphism

Rules for Java Method Overriding

1. method must have same name as in the parent class
2. method must have same parameter as in the parent class.
3. must be IS-A relationship (inheritance).

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. class Vehicle{
2. void run(){System.out.println("Vehicle is running");}
3. }
4. class Bike2 extends Vehicle{
5. void run(){System.out.println("Bike is running safely");}
6.
7. public static void main(String args[]){
8. Bike2 obj = new Bike2();
9. obj.run();
10. }

IX ABSTRACTION

Abstraction in Java

Abstraction is a process of hiding the implementation details and showing
only functionality to the user.

Another way, it shows only important things to the user and hides the
internal details for example sending sms, you just type the text and send the
message. You don't know the internal processing about the message
delivery.

Abstraction lets you focus on what the object does instead of how it does it.

Ways to achieve Abstraction

There are two ways to achieve abstraction in java

1. Abstract class (0 to 100%)
2. Interface (100%)

Abstract class in Java

A class that is declared as abstract is known as abstract class. It needs to
be extended and its method implemented. It cannot be instantiated.

Example abstract class

1. abstract class A{ }

abstract method

A method that is declared as abstract and does not have implementation is

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

known as abstract method.

Example abstract method

1. abstract void printStatus();//no body and abstract

Example of abstract class that has abstract method

In this example, Bike the abstract class that contains only one abstract
method run. It implementation is provided by the Honda class.

1. abstract class Bike{
2. abstract void run();
3. }
4. class Honda4 extends Bike{
5. void run(){System.out.println("running safely..");}
6. public static void main(String args[]){
7. Bike obj = new Honda4();
8. obj.run();
9. }
10. }

1. abstract class Shape{
2. abstract void draw();
3. }
4. //In real scenario, implementation is provided by others i.e. unknown

by end user
5. class Rectangle extends Shape{
6. void draw(){System.out.println("drawing rectangle");}
7. }
8. class Circle1 extends Shape{
9. void draw(){System.out.println("drawing circle");}
10. }
11. //In real scenario, method is called by programmer or user
12. class TestAbstraction1{
13. public static void main(String args[]){
14. Shape s=new Circle1();//In real scenario, object is provided thro

ugh method e.g. getShape() method
15. s.draw();
16. }
17. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Interface in Java

An interface in java is a blueprint of a class. It has static constants and
abstract methods.

The interface in java is a mechanism to achieve abstraction. There can be
only abstract methods in the java interface not method body. It is used to
achieve abstraction and multiple inheritance in Java.

Java Interface also represents IS-A relationship.

It cannot be instantiated just like abstract class.

Why use Java interface?

There are mainly three reasons to use interface. They are given below.

 It is used to achieve abstraction.
 By interface, we can support the functionality of multiple inheritance.
 It can be used to achieve loose coupling

Java Interface Example

In this example, Printable interface has only one method, its implementation
is provided in the A class.

1. interface printable{
2. void print();
3. }
4. class A6 implements printable{
5. public void print(){System.out.println("Hello");}
6.
7. public static void main(String args[]){
8. A6 obj = new A6();
9. obj.print();
10. }
11. }

Differences between abstract class and interface that are given below.

Abstract class Interface

1) Abstract class can have Interface can have only abstract methods.
abstract and non-abstract Since Java 8, it can have default and
methods. static methods also.

2) Abstract class doesn't support
Interface supports multiple inheritance.

multiple inheritance.

3) Abstract class can have final, Interface has only static and final

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

non-final, static and non-static variables.
variables.

4) Abstract class can provide the Interface can't provide the
implementation of interface. implementation of abstract class.

5) The abstract keyword is used The interface keyword is used to declare
to declare abstract class.

6) Example:

interface.

Example:
public abstract class Shape{ public interface Drawable{
public abstract void draw(); void draw();
} }

1. interface A{
2. void a(); void b();
3. void c(); void d();
4. }
5. abstract class B implements A{
6. public void c(){System.out.println("I am c");}
7. }
8. class M extends B{
9. public void a(){System.out.println("I am a");}
10. public void b(){System.out.println("I am b");}
11. public void d(){System.out.println("I am d");}
12. }
13. class Test5{
14. public static void main(String args[]){
15. A a=new M();
16. a.a();
17. a.b();
18. a.c();
19. a.d();
20. }}

X PACKAGE

A java package is a group of similar types of classes, interfaces and sub-
packages.

Package in java can be categorized in two form, built-in package and user-
defined package.

There are many built-in packages such as java, lang, awt, javax, swing, net,
io, util, sql etc.

Here, we will have the detailed learning of creating and using user-defined
packages.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Advantage of Java Package

1) Java package is used to categorize the classes and interfaces so that they
can be easily maintained.

2) Java package provides access protection.

3) Java package removes naming collision.

Simple example of java package

The package keyword is used to create a package in java.

1. //save as Simple.java
2. package mypack;
3. public class Simple{
4. public static void main(String args[]){
5. System.out.println("Welcome to package");
6. }
7. }

How to compile java package

If you are not using any IDE, you need to follow the syntax given below:

1. javac -d directory javafilename

For example

1. javac -d . Simple.java

The -d switch specifies the destination where to put the generated class file.
You can use any directory name like /home (in case of Linux), d:/abc (in
case of windows) etc. If you want to keep the package within the same
directory, you can use . (dot).

How to access package from another package?

There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;
3. fully qualified name.

1) Using packagename.*

If you use package.* then all the classes and interfaces of this package will
be accessible but not subpackages.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

The import keyword is used to make the classes and interface of another
package accessible to the current package.

Example of package that import the packagename.*

1. //save by A.java
2. package pack;
3. public class A{
4. public void msg(){System.out.println("Hello");}
5. }

1. //save by B.java
2. package mypack;
3. import pack.*;
4.
5. class B{
6. public static void main(String args[]){
7. A obj = new A();
8. obj.msg();
9. }
10. }

2) Using packagename.classname

If you import package.classname then only declared class of this package
will be accessible.

Example of package by import package.classname

1. //save by A.java
2.
3. package pack;
4. public class A{
5. public void msg(){System.out.println("Hello");}
6. }

1. //save by B.java
2. package mypack;
3. import pack.A;
4.
5. class B{
6. public static void main(String args[]){
7. A obj = new A();
8. obj.msg();
9. }
10. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3) Using fully qualified name

If you use fully qualified name then only declared class of this package will
be accessible. Now there is no need to import. But you need to use fully
qualified name every time when you are accessing the class or interface.

It is generally used when two packages have same class name e.g. java.util
and java.sql packages contain Date class.

Example of package by import fully qualified name

1. //save by A.java
2. package pack;
3. public class A{
4. public void msg(){System.out.println("Hello");}
5. }
6.

1. //save by B.java
2. package mypack;
3. class B{
4. public static void main(String args[]){
5. pack.A obj = new pack.A();//using fully qualified name
6. obj.msg();
7. }
8. }

Access Modifiers in java

There are two types of modifiers in java: access modifiers and non-access
modifiers.

The access modifiers in java specifies accessibility (scope) of a data member,
method, constructor or class.

There are 4 types of java access modifiers:

1. private
2. default
3. protected
4. public

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Understanding all java access modifiers

Access within within outside package by outside

Modifier class package subclass only package

Private Y N N N

Default Y Y N N

Protected Y Y Y N

Public Y Y Y Y

XI. STRING HANDLING in JAVA

A string is a sequence of character in Java, widely used as an object.

In java, string is basically an object that represents sequence of char values.
An array of characters works same as java string. For example:

1. char[] ch={'j','a','v','a','t','p','o','i','n','t'};
2. String s=new String(ch);

is same as:

1. String s="javatpoint";

Java String class provides a lot of methods to perform operations on string
such as compare(), concat(), equals(), split(), length(), replace(), compareTo(),
intern(), substring() etc.

What is String in java

Generally, string is a sequence of characters. But in java, string is an object
that represents a sequence of characters. The java.lang.String class is used
to create string object.

How to create String object?

There are two ways to create String object:

1. By string literal
2. By new keyword

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1) String Literal

Java String literal is created by using double quotes. For Example:

1. String s="welcome";

Each time you create a string literal, the JVM checks the string constant
pool first. If the string already exists in the pool, a reference to the pooled
instance is returned. If string doesn't exist in the pool, a new string instance
is created and placed in the pool. For example:

1. String s1="Welcome";
2. String s2="Welcome";//will not create new instance

2) By new keyword

1. String s=new String("Welcome");//creates two objects and one referen
ce variable

1. public class StringExample{
2. public static void main(String args[]){
3. String s1="java";//creating string by java string literal
4. char ch[]={'s','t','r','i','n','g','s'};
5. String s2=new String(ch);//converting char array to string
6. String s3=new String("example");//creating java string by new keywor

d
7. System.out.println(s1);
8. System.out.println(s2);
9. System.out.println(s3);
10. }}

Java String class methods

The java.lang.String class provides many useful methods to perform
operations on sequence of char values.

No. Method Description

1 char charAt(int index)
returns char value for the

particular index

2 int length() returns string length

3
static String format(String format, Object...

returns formatted string
args)

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

4
static String format(Locale l, String format, returns formatted string

 Object... args) with given locale

5 String substring(int beginIndex)
returns substring for given

begin index

6
String substring(int beginIndex, int returns substring for given

 endIndex) begin index and end index

7 boolean contains(CharSequence s)

returns true or false after

matching the sequence of

char value

8
static String join(CharSequence delimiter,

returns a joined string
CharSequence... elements)

static String join(CharSequence delimiter,

9 Iterable<? extends CharSequence> returns a joined string

elements)

10 boolean equals(Object another)
checks the equality of string

with object

11 boolean isEmpty() checks if string is empty

12 String concat(String str) concatinates specified string

13 String replace(char old, char new)
replaces all occurrences of

specified char value

14
String replace(CharSequence old, replaces all occurrences of

 CharSequence new) specified CharSequence

15
static String equalsIgnoreCase(String compares another string. It

 another) doesn't check case.

16 String[] split(String regex)
returns splitted string

matching regex

17 String[] split(String regex, int limit)
returns splitted string

matching regex and limit

18 String intern() returns interned string

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

19 int indexOf(int ch)
returns specified char value

index

20 int indexOf(int ch, int fromIndex)

returns specified char value

index starting with given

index

21 int indexOf(String substring)
returns specified substring

index

int indexOf(String substring, int
returns specified substring

22
fromIndex)

 index starting with given

index

23 String toLowerCase() returns string in lowercase.

24 String toLowerCase(Locale l)
returns string in lowercase

using specified locale.

25 String toUpperCase() returns string in uppercase.

26 String toUpperCase(Locale l)
returns string in uppercase

using specified locale.

27 String trim()
removes beginning and

ending spaces of this string.

28 static String valueOf(int value)
converts given type into

string. It is overloaded.

public class Sample {

public static void main(String args[]) {

char[] nameArray = {'A', 'l', 'e', 'x'};
String name = new String(nameArray);
System.out.println(name);

} }

concat() method can be used to attach strings.

public class Sample {

public static void main(String args[]) {
String str1 = "Hello ", str2 = "World!";
System.out.println(str1.concat(str2));

}

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

}

+ operator is more commonly used to attach strings.

"Hello," + " world" + "!"

Java toUpperCase() and toLowerCase() method is used to change string
case.

public class Sample {

public static void main(String args[]) {
String str1 = "Hello";
System.out.println(str1.toUpperCase());
System.out.println(str1.toLowerCase());

}
}

Java trim() method is used to eliminates white spaces before and after a
string.

public class Sample {

public static void main(String args[]) {

String str = " Hello ";
System.out.println(str.trim());

}
}

Java length() method is used to get the length of the string.

public class Sample {

public static void main(String args[]) {
String str = "Cloud";
System.out.println(str.length());

}
}

Java String compare

We can compare string in java on the basis of content and reference.

It is used in authentication (by equals() method), sorting (by compareTo()
method), reference matching (by == operator) etc.

There are three ways to compare string in java:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. By equals() method
2. By = = operator
3. By compareTo() method

1) String compare by equals() method

The String equals() method compares the original content of the string. It
compares values of string for equality. String class provides two methods:

 public boolean equals(Object another) compares this string to the
specified object.

 public boolean equalsIgnoreCase(String another) compares this
String to another string, ignoring case.

1. class Teststringcomparison1{
2. public static void main(String args[]){
3. String s1="Sachin";
4. String s2="Sachin";
5. String s3=new String("Sachin");
6. String s4="Saurav";
7. System.out.println(s1.equals(s2));//true
8. System.out.println(s1.equals(s3));//true
9. System.out.println(s1.equals(s4));//false
10. }
11. }

2) String compare by == operator

The = = operator compares references not values.

1. class Teststringcomparison3{
2. public static void main(String args[]){
3. String s1="Sachin";
4. String s2="Sachin";
5. String s3=new String("Sachin");
6. System.out.println(s1==s2);//true (because both refer to same insta

nce)
7. System.out.println(s1==s3);//false(because s3 refers to instance cre

ated in nonpool)
8. }
9. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3) String compare by compareTo() method

The String compareTo() method compares values lexicographically and
returns an integer value that describes if first string is less than, equal to or
greater than second string.

Suppose s1 and s2 are two string variables. If:

 s1 == s2 :0
 s1 > s2 :positive value
 s1 < s2 :negative value

1. class Teststringcomparison4{
2. public static void main(String args[]){
3. String s1="Sachin";
4. String s2="Sachin";
5. String s3="Ratan";
6. System.out.println(s1.compareTo(s2));//0
7. System.out.println(s1.compareTo(s3));//1(because s1>s3)
8. System.out.println(s3.compareTo(s1));//-1(because s3 < s1)
9. }
10. }

String Concatenation in Java

In java, string concatenation forms a new string that is the combination of
multiple strings. There are two ways to concat string in java:

1. By + (string concatenation) operator
2. By concat() method

1) String Concatenation by + (string concatenation) operator

Java string concatenation operator (+) is used to add strings. For Example:

1. class TestStringConcatenation1{
2. public static void main(String args[]){
3. String s="Sachin"+" Tendulkar";
4. System.out.println(s);//Sachin Tendulkar
5. }
6. }

2) String Concatenation by concat() method

The String concat() method concatenates the specified string to the end of
current string. Syntax:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. public String concat(String another)

Let's see the example of String concat() method.

1. class TestStringConcatenation3{
2. public static void main(String args[]){
3. String s1="Sachin ";
4. String s2="Tendulkar";
5. String s3=s1.concat(s2);
6. System.out.println(s3);//Sachin Tendulkar
7. } }

Substring in Java

A part of string is called substring. In other words, substring is a subset of
another string. In case of substring startIndex is inclusive and endIndex is
exclusive. Note: Index starts from 0.

You can get substring from the given string object by one of the two
methods:

1. public String substring(int startIndex): This method returns new

String object containing the substring of the given string from
specified startIndex (inclusive).

2. public String substring(int startIndex, int endIndex): This method
returns new String object containing the substring of the given string
from specified startIndex to endIndex.

In case of string:

 startIndex: inclusive endIndex: exclusive

Let's understand the startIndex and endIndex by the code given below.

1. String s="hello";
2. System.out.println(s.substring(0,2));//he

In the above substring, 0 points to h but 2 points to e (because end index is
exclusive).

Example of java substring

1. public class TestSubstring{
2. public static void main(String args[]){

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3. String s="SachinTendulkar";
4. System.out.println(s.substring(6));//Tendulkar
5. System.out.println(s.substring(0,6));//Sachin
6.
7. }

}

StringTokenizer in Java

The java.util.StringTokenizer class allows you to break a string into
tokens. It is simple way to break string.

It doesn't provide the facility to differentiate numbers, quoted strings,
identifiers etc. like StreamTokenizer class. We will discuss about the
StreamTokenizer class in I/O chapter.

Constructors of StringTokenizer class

There are 3 constructors defined in the StringTokenizer class

There are 3 constructors defined in the StringTokenizer class.

Constructor Description

StringTokenizer(String str) creates StringTokenizer with specified string.

StringTokenizer(String str, creates StringTokenizer with specified string

String delim) and delimeter.

creates StringTokenizer with specified string,

StringTokenizer(String str, delimeter and returnValue. If return value is

String delim, boolean true, delimiter characters are considered to be

returnValue) tokens. If it is false, delimiter characters serve

to separate tokens.

Methods of StringTokenizer class

The 6 useful methods of StringTokenizer class are as follows:

Public method Description

boolean hasMoreTokens() checks if there is more tokens available.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

String nextToken()
returns the next token from the

StringTokenizer object.

String nextToken(String

returns the next token based on the delimeter.
delim)

boolean hasMoreElements() same as hasMoreTokens() method.

Object nextElement()
same as nextToken() but its return type is

Object.

int countTokens() returns the total number of tokens.

1. import java.util.StringTokenizer;
2. public class Simple{
3. public static void main(String args[]){
4. StringTokenizer st = new StringTokenizer("my name is khan"," ");
5. while (st.hasMoreTokens()) {
6. System.out.println(st.nextToken());
7. }
8. }
9. }

Example of nextToken(String delim) method of
StringTokenizer class

1. import java.util.*;
2.
3. public class Test {
4. public static void main(String[] args) {
5. StringTokenizer st = new StringTokenizer("my,name,is,khan");
6.
7. // printing next token
8. System.out.println("Next token is : " + st.nextToken(","));
9. }
10. }

XII JAVA I/O TUTORIAL

Java I/O (Input and Output) is used to process the input and produce the
output.

Java uses the concept of stream to make I/O operation fast. The java.io
package contains all the classes required for input and output operations.

We can perform file handling in java by Java I/O API.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Stream

A stream is a sequence of data.In Java a stream is composed of bytes. It's
called a stream because it is like a stream of water that continues to flow.

In java, 3 streams are created for us automatically. All these streams are
attached with console.

1) System.out: standard output stream

2) System.in: standard input stream

3) System.err: standard error stream

 Byte Based Character Based
 Input Output Input Output

Basic

InputStream

OutputStream

Reader Writer

InputStreamReader OutputS

Arrays

ByteArrayInputStream

ByteArrayOutputStream

CharArrayReader

CharArr

Files

FileInputStream FileOutputStream
FileReader

FileWrite RandomAccessFile RandomAccessFile

Pipes PipedInputStream PipedOutputStream PipedReader PipedWr

Buffering BufferedInputStream BufferedOutputStream BufferedReader Buffered

Filtering FilterInputStream FilterOutputStream FilterReader FilterWri

Parsing

PushbackInputStream PushbackReader

StreamTokenizer LineNumberReader

Strings StringReader StringW

Data DataInputStream DataOutputStream

Data –
Formatted

PrintStream

PrintWri

Objects ObjectInputStream ObjectOutputStream

Utilities SequenceInputStream

Byte Streams Java byte streams are used to perform input and output of 8-
bit bytes. Though there are many classes related to byte streams but the
most frequently used classes are, FileInputStream and FileOutputStream.
Following is an example which makes use of these two classes to copy an
input file into an output file:

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

{

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

FileInputStream in = null;

FileOutputStream out = null;

try {

in = new FileInputStream("input.txt");

out = new FileOutputStream("output.txt");

int c;

while ((c = in.read()) != -1) {

out.write(c);

}

}finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close();

}

} }

}

Character Streams Java Byte streams are used to perform input and output
of 8-bit bytes, whereas Java Character streams are used to perform input
and output for 16-bit unicode. Though there are many classes related to
character streams but the most frequently used classes are, FileReader and
FileWriter. Though internally FileReader uses FileInputStream and
FileWriter uses FileOutputStream but here the major difference is that
FileReader reads two bytes at a time and FileWriter writes two bytes at a
time.

import java.io.*;

public class CopyFile {

public static void main(String args[]) throws IOException

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

{

FileReader in = null;

FileWriter out = null;

try {

in = new FileReader("input.txt");

out = new FileWriter("output.txt");

int c;

while ((c = in.read()) != -1) {

out.write(c);

}

}finally {

if (in != null) {

in.close();

}

if (out != null) {

out.close(); } } } }

import java.io.*;

public class ReadConsole {

public static void main(String args[]) throws IOException

{

InputStreamReader cin = null;

try {

cin = new InputStreamReader(System.in);

System.out.println("Enter characters, 'q' to quit.");

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

char c;

do {

c = (char) cin.read();

System.out.print(c);

} while(c != 'q');

}finally {

if (cin != null) {

cin.close();

}

}

}

Java BufferedInputStream Class

Java BufferedInputStream class is used to read information from stream. It
internally uses buffer mechanism to make the performance fast.

1. import java.io.*;
2. public class BufferedInputStreamExample{
3. public static void main(String args[]){
4. try{
5. FileInputStream fin=new FileInputStream("D:\\testout.txt");
6. BufferedInputStream bin=new BufferedInputStream(fin);
7. int i;
8. while((i=bin.read())!=-1){
9. System.out.print((char)i);
10. }
11. bin.close();
12. fin.close();
13. }catch(Exception e){System.out.println(e);}
14. }
15. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

UNIT III

XIII EXCEPTION HANDLING IN JAVA

The exception handling in java is one of the powerful mechanism to handle
the runtime errors so that normal flow of the application can be maintained.
Exception is an abnormal condition. Exception Handling is a mechanism to
handle runtime errors

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Hierarchy of Java Exception classes

Types of Exception

There are mainly two types of exceptions: checked and unchecked where
error is considered as unchecked exception. The sun microsystem says there
are three types of exceptions:

1. Checked Exception
2. Unchecked Exception
3. Error

Difference between checked and unchecked exceptions

1) Checked Exception

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

The classes that extend Throwable class except RuntimeException and Error
are known as checked exceptions e.g.IOException, SQLException etc.
Checked exceptions are checked at compile-time.

2) Unchecked Exception

The classes that extend RuntimeException are known as unchecked
exceptions e.g. ArithmeticException, NullPointerException,
ArrayIndexOutOfBoundsException etc. Unchecked exceptions are not
checked at compile-time rather they are checked at runtime.

3) Error

Error is irrecoverable e.g. OutOfMemoryError, VirtualMachineError,
AssertionError etc.

Java Exception Handling Keywords

There are 5 keywords used in java exception handling.

1. Try catch finally throw throws

Java try-catch

Java try block

Java try block is used to enclose the code that might throw an exception. It
must be used within the method.

Java try block must be followed by either catch or finally block.

Syntax of java try-catch

1. try{
2. //code that may throw exception
3. }catch(Exception_class_Name ref){}

1. public class Testtrycatch2{
2. public static void main(String args[]){
3. try{
4. int data=50/0;
5. }catch(ArithmeticException e){System.out.println(e);}
6. System.out.println("rest of the code...");
7. }
8. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Multi catch block

If you have to perform different tasks at the occurrence of different
Exceptions, use java multi catch block.

Let's see a simple example of java multi-catch block.

1. public class TestMultipleCatchBlock{
2. public static void main(String args[]){
3. try{
4. int a[]=new int[5];
5. a[5]=30/0;
6. }
7. catch(ArithmeticException e){System.out.println("task1 is completed

");}
8. catch(ArrayIndexOutOfBoundsException e){System.out.println("task

2 completed");}
9. catch(Exception e){System.out.println("common task completed");}
10.
11. System.out.println("rest of the code...");
12. }
13. }

Java finally block

Java finally block is a block that is used to execute important code such as
closing connection, stream etc.

Java finally block is always executed whether exception is handled or not.

Java finally block follows try or catch block.

Why use java finally

 Finally block in java can be used to put "cleanup" code such as
closing a file, closing connection etc.

Case 1

Let's see the java finally example where exception doesn't occur.

1. class TestFinallyBlock{
2. public static void main(String args[]){
3. try{

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

4. int data=25/5;
5. System.out.println(data);
6. }
7. catch(NullPointerException e){System.out.println(e);}
8. finally{System.out.println("finally block is always executed");}
9. System.out.println("rest of the code...");
10. }
11. }

Case 3

Let's see the java finally example where exception occurs and handled.

1. public class TestFinallyBlock2{
2. public static void main(String args[]){
3. try{
4. int data=25/0;
5. System.out.println(data);
6. }
7. catch(ArithmeticException e){System.out.println(e);}
8. finally{System.out.println("finally block is always executed");}
9. System.out.println("rest of the code...");
10. }
11. }

Java throw keyword

The Java throw keyword is used to explicitly throw an exception.

We can throw either checked or uncheked exception in java by throw
keyword. The throw keyword is mainly used to throw custom exception. We
will see custom exceptions later.

The syntax of java throw keyword is given below.

1. throw exception;

1. public class TestThrow1{
2. static void validate(int age){
3. if(age<18)
4. throw new ArithmeticException("not valid");
5. else
6. System.out.println("welcome to vote");
7. }
8. public static void main(String args[]){
9. validate(13);
10. System.out.println("rest of the code...");

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

11. }
12. }

Java throws keyword

The Java throws keyword is used to declare an exception. It gives an
information to the programmer that there may occur an exception so it is
better for the programmer to provide the exception handling code so that
normal flow can be maintained.

Exception Handling is mainly used to handle the checked exceptions. If
there occurs any unchecked exception such as NullPointerException, it is
programmers fault that he is not performing check up before the code being
used.

Syntax of java throws

1. return_type method_name() throws exception_class_name{
2. //method code
3. }

import java.io.*;
class M{
void method()throws IOException{
throw new IOException("device error");

} }
public class Testthrows2{

public static void main(String args[]){
try{
M m=new M();
m.method();

}catch(Exception e){System.out.println("exception handled");}
System.out.println("normal flow...");

} }

Java Custom Exception

If you are creating your own Exception that is known as custom exception or
user-defined exception. Java custom exceptions are used to customize the
exception according to user need.

Let's see a simple example of java custom exception.

1. class InvalidAgeException extends Exception{
2. InvalidAgeException(String s){

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3. super(s);
4. }
5. }

1. class TestCustomException1{
2.
3. static void validate(int age)throws InvalidAgeException{
4. if(age<18)
5. throw new InvalidAgeException("not valid");
6. else
7. System.out.println("welcome to vote");
8. }
9.
10. public static void main(String args[]){
11. try{
12. validate(13);
13. }catch(Exception m){System.out.println("Exception occured:

"+m);}
14.
15. System.out.println("rest of the code..."); }}

XIV MULTI THREADING IN JAVA

Multithreading in java is a process of executing multiple threads
simultaneously. Thread is basically a lightweight sub-process, a smallest
unit of processing. Multiprocessing and multithreading, both are used to
achieve multitasking.

Advantages of Java Multithreading

1) It doesn't block the user because threads are independent and you can
perform multiple operations at same time.

2) You can perform many operations together so it saves time.

3) Threads are independent so it doesn't affect other threads if exception
occur in a single thread.

What is Thread in java

A thread is a lightweight sub process, a smallest unit of processing. It is a
separate path of execution.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Threads are independent, if there occurs exception in one thread, it doesn't
affect other threads. It shares a common memory area.

Life cycle of a Thread (Thread States)

1. New
2. Runnable
3. Running
4. Non-Runnable (Blocked)
5. Terminated

A thread can be in one of the five states. According to sun, there is only 4
states in thread life cycle in java new, runnable, non-runnable and
terminated. There is no running state.

But for better understanding the threads, we are explaining it in the 5
states.

The life cycle of the thread in java is controlled by JVM.

The java thread states are as follows:

1. New
2. Runnable
3. Running
4. Non-Runnable (Blocked)
5. Terminated

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1) New

The thread is in new state if you create an instance of Thread class but
before the invocation of start() method.

2) Runnable

The thread is in runnable state after invocation of start() method, but the
thread scheduler has not selected it to be the running thread.

3) Running

The thread is in running state if the thread scheduler has selected it.

4) Non-Runnable (Blocked)

This is the state when the thread is still alive, but is currently not eligible to
run.

5) Terminated

A thread is in terminated or dead state when its run() method exits.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

How to create thread

There are two ways to create a thread:

1. By extending Thread class
2. By implementing Runnable interface.

Thread class:

Thread class provide constructors and methods to create and perform

operations on a thread. Thread class extends Object class and implements

Runnable interface.

Commonly used Constructors of Thread class:

 Thread()
 Thread(String name)
 Thread(Runnable r)
 Thread(Runnable r,String name)

Commonly used methods of Thread class:

public void run(): is used to perform action for a thread.

public void start(): starts the execution of the thread.JVM calls the
run() method on the thread.

public void sleep(long miliseconds): Causes the currently executing
thread to sleep (temporarily cease execution) for the specified number
of milliseconds.

public void join(): waits for a thread to die.

public void join(long miliseconds): waits for a thread to die for the
specified miliseconds.

public int getPriority(): returns the priority of the thread.

public int setPriority(int priority): changes the priority of the
thread.

public String getName(): returns the name of the thread.

public void setName(String name): changes the name of the thread.

public Thread currentThread(): returns the current thread.

public int getId(): returns the id of the thread.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

public Thread.State getState(): returns the state of the thread.

public boolean isAlive(): tests if the thread is alive.

public void yield(): causes the currently executing thread object to
temporarily pause and allow other threads to execute.

public void suspend(): is used to suspend the thread(depricated).

public void resume(): is used to resume the suspended
thread(depricated).

public void stop(): is used to stop the thread(depricated).

public boolean isDaemon(): tests if the thread is a daemon thread.

public void setDaemon(boolean b): marks the thread as daemon or
user thread.

public void interrupt(): interrupts the thread.

public boolean isInterrupted(): tests if the thread has been
interrupted.

public static boolean interrupted(): tests if the current thread has
been interrupted.

Runnable interface:

The Runnable interface should be implemented by any class whose

instances are intended to be executed by a thread. Runnable interface have

only one method named run().

1. public void run(): is used to perform action for a thread.

Starting a thread:

start() method of Thread class is used to start a newly created thread. It

performs following tasks:

 A new thread starts(with new callstack).
 The thread moves from New state to the Runnable state.
 When the thread gets a chance to execute, its target run() method will

run.

1) Java Thread Example by extending Thread class

1. class Multi extends Thread{
2. public void run(){
3. System.out.println("thread is running...");

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

4. }
5. public static void main(String args[]){
6. Multi t1=new Multi();
7. t1.start();
8. }
9. }

2) Java Thread Example by implementing Runnable
interface

1. class Sample implements Runnable{
2. public void run(){
3. System.out.println("Thread is running...");
4. }
5.
6. public static void main(String args[]){
7. Sample s=new Sample();
8. Thread t1 =new Thread(s);
9. t1.start();
10. }
11. }

Sleep method in java

The sleep() method of Thread class is used to sleep a thread for the specified
amount of time.

Syntax of sleep() method in java

The Thread class provides two methods for sleeping a thread:

 public static void sleep(long miliseconds)throws InterruptedException
 public static void sleep(long miliseconds, int nanos)throws

InterruptedException

Example of sleep method in java

1. class Ex extends Thread{
2. public void run(){
3. for(int j=1;j<5;j++){
4. try{Thread.sleep(500);}catch(InterruptedException e){System.out.pri

ntln(e);}
5. System.out.println(j);

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

6. }
7. }
8. public static void main(String args[]){
9. Ex t1=new Ex();

11.

}

The join() method

The join() method waits for a thread to die. In other words, it causes the
currently running threads to stop executing until the thread it joins with
completes its task.

Syntax:

public void join()throws InterruptedException

public void join(long milliseconds)throws InterruptedException

Example of join() method

1. class Sample extends Thread{
2. public void run(){
3. for(int i=1;i<=5;i++){
4. try{
5. Thread.sleep(500);
6. }catch(Exception e){System.out.println(e);}
7. System.out.println(i);
8. } }
9. public static void main(String args[]){
10. Sample t1=new Sample ();
11. Sample t2=new Sample ();
12. Sample t3=new Sample ();
13. t1.start();
14. try{
15. t1.join();
16. }catch(Exception e){System.out.println(e);}
17. t2.start();
18. t3.start();
19. } }

getName(),setName(String) and getId() method:

10. Ex t2=new Ex();

12.

t1.start();

13. t2.start();
14.
15. }

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

public String getName()

public void setName(String name)

public long getId()

1. class Sample1 extends Thread{
2. public void run(){
3. System.out.println("running...");
4. }
5. public static void main(String args[]){
6. Sample1t1=new Sample1 ();
7. Sample1 t2=new Sample1 ();
8. System.out.println("Name of t1:"+t1.getName());
9. System.out.println("Name of t2:"+t2.getName());
10. System.out.println("id of t1:"+t1.getId());
11. t1.start();
12. t2.start();
13. t1.setName("Sonoo Jaiswal");
14. System.out.println("After changing name of t1:"+t1.getName());

15. } }

Priority of a Thread (Thread Priority):

Each thread have a priority. Priorities are represented by a number between

1 and 10. In most cases, thread schedular schedules the threads according

to their priority (known as preemptive scheduling). But it is not guaranteed

because it depends on JVM specification that which scheduling it chooses.

3 constants defined in Thread class:

1. public static int MIN_PRIORITY
2. public static int NORM_PRIORITY
3. public static int MAX_PRIORITY

Default priority of a thread is 5 (NORM_PRIORITY). The value of

MIN_PRIORITY is 1 and the value of MAX_PRIORITY is 10.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Example of priority of a Thread:

1. class TestMultiPriority1 extends Thread{
2. public void run(){
3. System.out.println("running thread name is:"+Thread.currentThread

().getName());
4. System.out.println("running thread priority is:"+Thread.currentThre

ad().getPriority());
5.
6. }
7. public static void main(String args[]){
8. TestMultiPriority1 m1=new TestMultiPriority1();
9. TestMultiPriority1 m2=new TestMultiPriority1();
10. m1.setPriority(Thread.MIN_PRIORITY);
11. m2.setPriority(Thread.MAX_PRIORITY);
12. m1.start();
13. m2.start();
14.
15. }
16. }

ThreadGroup in Java

Java provides a convenient way to group multiple threads in a single object.
In such way, we can suspend, resume or interrupt group of threads by a
single method call.

Constructors of ThreadGroup class

There are only two constructors of ThreadGroup class.

No. Constructor Description

1) ThreadGroup(String name)
creates a thread group with given
name.

2)
ThreadGroup(ThreadGroup parent,
String name)

creates a thread group with given
parent group and name.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

ThreadGroup Example

File: ThreadGroupDemo.java

1. public class ThreadGroupDemo implements Runnable{
2. public void run()
3. {
4. System.out.println(Thread.currentThread().getName());
5. }
6. public static void main(String[] args)
7. {
8. ThreadGroupDemo runnable = new ThreadGroupDemo();
9. ThreadGroup tg1 = new ThreadGroup("Parent ThreadGroup");
10.
11. Thread t1 = new Thread(tg1, runnable,"one");
12. t1.start();
13. Thread t2 = new Thread(tg1, runnable,"two");
14. t2.start();
15. Thread t3 = new Thread(tg1, runnable,"three");
16. t3.start();
17.
18. System.out.println("Thread Group Name: "+tg1.getName()

);
19. tg1.list();
20.
21. }
22. }

1. class TestMultitasking1 extends Thread{
2. public void run(){
3. System.out.println("task one");
4. }
5. public static void main(String args[]){
6. TestMultitasking1 t1=new TestMultitasking1();
7. TestMultitasking1 t2=new TestMultitasking1();
8. TestMultitasking1 t3=new TestMultitasking1();
9.
10. t1.start();
11. t2.start();
12. t3.start();
13. }
14. }

Synchronization in Java

Synchronization in java is the capability to control the access of multiple
threads to any shared resource.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Synchronization is better option where we want to allow only one
thread to access the shared resource.

Why use Synchronization

The synchronization is mainly used to

1. To prevent thread interference.
2. To prevent consistency problem.

Types of Synchronization

There are two types of synchronization

1. Process Synchronization
2. Thread Synchronization

Thread Synchronization

There are two types of thread synchronization mutual exclusive and inter-
thread communication.

1. Mutual Exclusive
1. Synchronized method.
2. Synchronized block.
3. static synchronization.

2. Cooperation (Inter-thread communication in java)

Mutual Exclusive

Mutual Exclusive helps keep threads from interfering with one another while
sharing data. This can be done by three ways in java:

1. by synchronized method
2. by synchronized block
3. by static synchronization

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or
monitor. Every object has an lock associated with it. By convention, a thread
that needs consistent access to an object's fields has to acquire the object's
lock before accessing them, and then release the lock when it's done with
them.

From Java 5 the package java.util.concurrent.locks contains several lock
implementations.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

1. //example of java synchronized method
2. class Table{
3. synchronized void printTable(int n){//synchronized method
4. for(int i=1;i<=5;i++){
5. System.out.println(n*i);
6. try{
7. Thread.sleep(400);
8. }catch(Exception e){System.out.println(e);}
9. }
10.
11. }
12. }
13.
14. class MyThread1 extends Thread{
15. Table t;
16. MyThread1(Table t){
17. this.t=t;
18. }
19. public void run(){
20. t.printTable(5);
21. }
22.
23. }
24. class MyThread2 extends Thread{
25. Table t;
26. MyThread2(Table t){
27. this.t=t;
28. }
29. public void run(){
30. t.printTable(100);
31. }
32. }
33.
34. public class TestSynchronization2{
35. public static void main(String args[]){
36. Table obj = new Table();//only one object
37. MyThread1 t1=new MyThread1(obj);
38. MyThread2 t2=new MyThread2(obj);
39. t1.start();
40. t2.start();
41. }
42. }

Inter-thread communication in Java

Inter-thread communication or Co-operation is all about allowing
synchronized threads to communicate with each other.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Cooperation (Inter-thread communication) is a mechanism in which a
thread is paused running in its critical section and another thread is
allowed to enter (or lock) in the same critical section to be executed.It is
implemented by following methods of Object class:

 wait()
 notify()
 notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another
thread invokes the notify() method or the notifyAll() method for this object,
or a specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from
the synchronized method only otherwise it will throw exception.

Method Description

public final void wait()throws

InterruptedException
waits until object is notified.

public final void wait(long timeout)throws

InterruptedException

waits for the specified

amount of time.

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any
threads are waiting on this object, one of them is chosen to be awakened.
The choice is arbitrary and occurs at the discretion of the implementation.
Syntax:

public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor. Syntax:

public final void notifyAll()

UNIT IV

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Applet

Applet is a special type of program that is embedded in the webpage to
generate the dynamic content. It runs inside the browser and works at client
side.

Advantage of Applet

There are many advantages of applet. They are as follows:

 It works at client side so less response time.
 Secured
 It can be executed by browsers running under many plateforms,

including Linux, Windows, Mac Os etc.

Drawback of Applet

 Plugin is required at client browser to execute applet.

Do You Know

 Who is responsible to manage the life cycle of an applet ?
 How to perform animation in applet ?
 How to paint like paint brush in applet ?
 How to display digital clock in applet ?
 How to display analog clock in applet ?
 How to communicate two applets ?

Hierarchy of Applet

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Displaying Graphics in Applet

java.awt.Graphics class provides many methods for graphics programming.

Commonly used methods of Graphics class:

1. public abstract void drawString(String str, int x, int y): is used to

draw the specified string.
2. public void drawRect(int x, int y, int width, int height): draws a

rectangle with the specified width and height.
3. public abstract void fillRect(int x, int y, int width, int height): is

used to fill rectangle with the default color and specified width and
height.

4. public abstract void drawOval(int x, int y, int width, int height): is
used to draw oval with the specified width and height.

5. public abstract void fillOval(int x, int y, int width, int height): is
used to fill oval with the default color and specified width and height.

6. public abstract void drawLine(int x1, int y1, int x2, int y2): is
used to draw line between the points(x1, y1) and (x2, y2).

7. public abstract boolean drawImage(Image img, int x, int y,
ImageObserver observer): is used draw the specified image.

8. public abstract void drawArc(int x, int y, int width, int height, int
startAngle, int arcAngle): is used draw a circular or elliptical arc.

9. public abstract void fillArc(int x, int y, int width, int height, int
startAngle, int arcAngle): is used to fill a circular or elliptical arc.

10. public abstract void setColor(Color c): is used to set the
graphics current color to the specified color.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

11. public abstract void setFont(Font font): is used to set the
graphics current font to the specified font.

Example of Graphics in applet:

1. import java.applet.Applet;
2. import java.awt.*;
3.
4. public class GraphicsDemo extends Applet{
5.
6. public void paint(Graphics g){
7. g.setColor(Color.red);
8. g.drawString("Welcome",50, 50);
9. g.drawLine(20,30,20,300);
10. g.drawRect(70,100,30,30);
11. g.fillRect(170,100,30,30);
12. g.drawOval(70,200,30,30);
13.
14. g.setColor(Color.pink);
15. g.fillOval(170,200,30,30);
16. g.drawArc(90,150,30,30,30,270);
17. g.fillArc(270,150,30,30,0,180);
18.
19. }
20. }

EventHandling in Applet

As we perform event handling in AWT or Swing, we can perform it in applet

also. Let's see the simple example of event handling in applet that prints a

message by click on the button.

Example of EventHandling in applet:

1. import java.applet.*;
2. import java.awt.*;
3. import java.awt.event.*;
4. public class EventApplet extends Applet implements ActionListener{
5. Button b;
6. TextField tf;
7.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

8. public void init(){
9. tf=new TextField();
10. tf.setBounds(30,40,150,20);
11.
12. b=new Button("Click");
13. b.setBounds(80,150,60,50);
14.
15. add(b);add(tf);
16. b.addActionListener(this);
17.
18. setLayout(null);
19. }
20.
21. public void actionPerformed(ActionEvent e){
22. tf.setText("Welcome");
23. }
24. }

In the above example, we have created all the controls in init() method

because it is invoked only once.

myapplet.html

1. <html>
2. <body>
3. <applet code="EventApplet.class" width="300" height="300">
4. </applet>
5. </body>
6. </html>

Java AWT Tutorial

Java AWT (Abstract Window Toolkit) is an API to develop GUI or window-
based applications in java.

Java AWT components are platform-dependent i.e. components are
displayed according to the view of operating system. AWT is heavyweight i.e.
its components are using the resources of OS.

The java.awt package provides classes for AWT api such as TextField, Label,
TextArea, RadioButton, CheckBox, Choice, List etc.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java AWT Hierarchy

The hierarchy of Java AWT classes are given below.

Java AWT Button

The button class is used to create a labeled button that has platform
independent implementation. The application result in some action when
the button is pushed.

AWT Button Class declaration

1. public class Button extends Component implements Accessible

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java AWT Button Example

1. import java.awt.*;
2. public class ButtonExample {
3. public static void main(String[] args) {
4. Frame f=new Frame("Button Example");
5. Button b=new Button("Click Here");
6. b.setBounds(50,100,80,30);
7. f.add(b);
8. f.setSize(400,400);
9. f.setLayout(null);
10. f.setVisible(true);
11. }
12. }

Output:

Java ActionListener Interface

The Java ActionListener is notified whenever you click on the button or
menu item. It is notified against ActionEvent. The ActionListener interface is
found in java.awt.event package. It has only one method: actionPerformed().

actionPerformed() method

The actionPerformed() method is invoked automatically whenever you click
on the registered component.

1. public abstract void actionPerformed(ActionEvent e);

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java ActionListener Example: On Button click

1. import java.awt.*;
2. import java.awt.event.*;
3. public class ActionListenerExample {
4. public static void main(String[] args) {
5. Frame f=new Frame("ActionListener Example");
6. final TextField tf=new TextField();
7. tf.setBounds(50,50, 150,20);
8. Button b=new Button("Click Here");
9. b.setBounds(50,100,60,30);
10.
11. b.addActionListener(new ActionListener(){
12. public void actionPerformed(ActionEvent e){
13. tf.setText("Welcome to Javatpoint.");
14. }
15. });
16. f.add(b);f.add(tf);
17. f.setSize(400,400);
18. f.setLayout(null);
19. f.setVisible(true);
20. }
21. }

Output:

UNIT V

Java LayoutManagers

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

The LayoutManagers are used to arrange components in a particular
manner. LayoutManager is an interface that is implemented by all the
classes of layout managers. There are following classes that represents the
layout managers:

1. java.awt.BorderLayout
2. java.awt.FlowLayout
3. java.awt.GridLayout
4. java.awt.CardLayout
5. java.awt.GridBagLayout
6. javax.swing.BoxLayout
7. javax.swing.GroupLayout
8. javax.swing.ScrollPaneLayout
9. javax.swing.SpringLayout etc.

Java BorderLayout

The BorderLayout is used to arrange the components in five regions: north,
south, east, west and center. Each region (area) may contain one component
only. It is the default layout of frame or window. The BorderLayout provides
five constants for each region:

1. public static final int NORTH
2. public static final int SOUTH
3. public static final int EAST
4. public static final int WEST
5. public static final int CENTER

Constructors of BorderLayout class:

 BorderLayout(): creates a border layout but with no gaps between the
components.

 JBorderLayout(int hgap, int vgap): creates a border layout with the
given horizontal and vertical gaps between the components.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java GridBagLayout

The Java GridBagLayout class is used to align components vertically,
horizontally or along their baseline.

The components may not be of same size. Each GridBagLayout object
maintains a dynamic, rectangular grid of cells. Each component occupies
one or more cells known as its display area. Each component associates an
instance of GridBagConstraints. With the help of constraints object we
arrange component's display area on the grid. The GridBagLayout manages
each component's minimum and preferred sizes in order to determine
component's size.

Fields

Modifier and Type Field Description

double[] columnWeights

It is used to

hold the

overrides to

the column

weights.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

int[] columnWidths

It is used to

hold the

overrides to

the column

minimum

width.

protected

Hashtable<Component,GridBagConstraints

>

comptable

It is used to

maintains

the

association

between a

component

and its

gridbag

constraints.

protected GridBagConstraints
defaultConstraint

s

It is used to

hold a

gridbag

constraints

instance

containing

the default

values.

protected GridBagLayoutInfo layoutInfo

It is used to

hold the

layout

information

for the

gridbag.

protected static int MAXGRIDSIZE

No longer in

use just for

backward

compatibilit

y

protected static int MINSIZE

It is smallest

grid that can

be laid out

by the grid

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

bag layout.

protected static int PREFERREDSIZE

It is

preferred

grid size

that can be

laid out by

the grid bag

layout.

int[] rowHeights

It is used to

hold the

overrides to

the row

minimum

heights.

double[] rowWeights

It is used to

hold the

overrides to

the row

weights.

Useful Methods

Modifier and Type Method Description

void
addLayoutComponent(Component

comp, Object constraints)

It adds specified

component to

the layout, using

the specified

constraints

object.

void
addLayoutComponent(String name,

Component comp)

protected void
adjustForGravity(GridBagConstraints

constraints, Rectangle r)

It has no effect,

since this layout

manager does

not use a per-

component

string.

It adjusts the x,

y, width, and

height fields to

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

the correct

values

depending on

the constraint

geometry and

pads.

protected void
AdjustForGravity(GridBagConstraints

constraints, Rectangle r)

This method is

for backwards

compatibility

only

protected void arrangeGrid(Container parent)
Lays out the

grid.

protected void ArrangeGrid(Container parent)

This method is

obsolete and

supplied for

backwards

compatibility

GridBagConstraints getConstraints(Component comp)

getLayoutAlignmentX(Container

It is for getting

the constraints

for the specified

component.

It returns the

float

float

parent)

getLayoutAlignmentY(Container

parent)

alignment along

the x axis.

It returns the

alignment along

the y axis.

int[][] getLayoutDimensions()

It determines

column widths

and row heights

for the layout

grid.

protected

GridBagLayoutInfo

getLayoutInfo(Container parent, int

sizeflag)

This method is

obsolete and

supplied for

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

backwards

compatibility.

protected

GridBagLayoutInfo

GetLayoutInfo(Container parent, int

sizeflag)

This method is

obsolete and

supplied for

backwards

compatibility.

Point getLayoutOrigin()

It determines the

origin of the

layout area, in

the graphics

coordinate space

of the target

container.

double[][] getLayoutWeights()

It determines the

weights of the

layout grid's

columns and

rows.

protected

Dimension

getMinSize(Container parent,

GridBagLayoutInfo info)

It figures out the

minimum size of

the master

based on the

information from

getLayoutInfo.

protected

Dimension

GetMinSize(Container parent,

GridBagLayoutInfo info)

This method is

obsolete and

supplied for

backwards

compatibility

only

Example

1. import java.awt.Button;
2. import java.awt.GridBagConstraints;
3. import java.awt.GridBagLayout;
4.
5. import javax.swing.*;

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

6. public class GridBagLayoutExample extends JFrame{
7. public static void main(String[] args) {
8.
9. }

 GridBagLayoutExample a = new GridBagLayoutExample();

10. public GridBagLayoutExample() {
11. GridBagLayoutgrid = new GridBagLayout();
12. GridBagConstraints gbc = new GridBagConstraints();
13. setLayout(grid);
14. setTitle("GridBag Layout Example");
15. GridBagLayout layout = new GridBagLayout();
16. this.setLayout(layout);
17. gbc.fill = GridBagConstraints.HORIZONTAL;
18. gbc.gridx = 0;
19. gbc.gridy = 0;
20. this.add(new Button("Button One"), gbc);
21. gbc.gridx = 1;
22. gbc.gridy = 0;
23. this.add(new Button("Button two"), gbc);
24. gbc.fill = GridBagConstraints.HORIZONTAL;
25. gbc.ipady = 20;
26. gbc.gridx = 0;
27. gbc.gridy = 1;
28. this.add(new Button("Button Three"), gbc);
29. gbc.gridx = 1;
30. gbc.gridy = 1;
31. this.add(new Button("Button Four"), gbc);
32. gbc.gridx = 0;
33. gbc.gridy = 2;
34. gbc.fill = GridBagConstraints.HORIZONTAL;
35. gbc.gridwidth = 2;
36. this.add(new Button("Button Five"), gbc);
37. setSize(300, 300);
38. setPreferredSize(getSize());
39. setVisible(true);
40. setDefaultCloseOperation(EXIT_ON_CLOSE);
41.

42. }
43.

44. }

Output:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java Swing Tutorial

Java Swing tutorial is a part of Java Foundation Classes (JFC) that is used
to create window-based applications. It is built on the top of AWT (Abstract
Windowing Toolkit) API and entirely written in java.

Unlike AWT, Java Swing provides platform-independent and lightweight
components.

The javax.swing package provides classes for java swing API such as
JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu,
JColorChooser etc.

Difference between AWT and Swing

There are many differences between java awt and swing that are given
below.

No. Java AWT Java Swing

1) AWT components are platform- Java swing components are

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

dependent. platform-independent.

2) AWT components are heavyweight.
Swing components are

lightweight.

3)
AWT doesn't support pluggable look
and feel.

Swing supports pluggable

look and feel.

4)
AWT provides less components than
Swing.

Swing provides more

powerful components such

as tables, lists, scrollpanes,

colorchooser, tabbedpane etc.

AWT doesn't follows MVC(Model View

Controller) where model represents data,

5) view represents presentation and

controller acts as an interface between

model and view.

Java JButton

The JButton class is used to create a labeled button that has platform
independent implementation. The application result in some action when
the button is pushed. It inherits AbstractButton class.

JButton class declaration

Let's see the declaration for javax.swing.JButton class.

1. public class JButton extends AbstractButton implements Accessible

Commonly used Constructors:

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Commonly used Methods of AbstractButton class:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Methods Description

void setText(String s)
It is used to set specified text on

button

String getText()
It is used to return the text of the

button.

void setEnabled(boolean b)
It is used to enable or disable the

button.

void setIcon(Icon b)
It is used to set the specified Icon on

the button.

Icon getIcon()
It is used to get the Icon of the

button.

void setMnemonic(int a)
It is used to set the mnemonic on the

button.

void addActionListener(ActionListener It is used to add the action listener to

a) this object.

Java JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose
one option from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

Let's see the declaration for javax.swing.JRadioButton class.

1. public class JRadioButton extends JToggleButton implements Accessi

ble

Commonly used Constructors:

Constructor Description

JRadioButton()
Creates an unselected radio button with no

text.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

JRadioButton(String s)
Creates an unselected radio button with

specified text.

JRadioButton(String s, boolean Creates a radio button with the specified

selected) text and selected status.

Commonly used Methods:

Methods Description

void setText(String s)
It is used to set specified text on

button.

String getText()
It is used to return the text of the

button.

void setEnabled(boolean b)
It is used to enable or disable the

button.

void setIcon(Icon b)
It is used to set the specified Icon on

the button.

Icon getIcon()
It is used to get the Icon of the

button.

void setMnemonic(int a)
It is used to set the mnemonic on the

button.

void addActionListener(ActionListener It is used to add the action listener to

a) this object.

Java JRadioButton Example

1. import javax.swing.*;
2. public class RadioButtonExample {
3. JFrame f;
4. RadioButtonExample(){
5. f=new JFrame();
6. JRadioButton r1=new JRadioButton("A) Male");
7. JRadioButton r2=new JRadioButton("B) Female");
8. r1.setBounds(75,50,100,30);
9. r2.setBounds(75,100,100,30);
10. ButtonGroup bg=new ButtonGroup();
11. bg.add(r1);bg.add(r2);
12. f.add(r1);f.add(r2);

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

13. f.setSize(300,300);
14. f.setLayout(null);
15. f.setVisible(true);
16. }
17. public static void main(String[] args) {
18. new RadioButtonExample();
19. }
20. }

Java GridBagLayout

The Java GridBagLayout class is used to align components vertically,
horizontally or along their baseline.

The components may not be of same size. Each GridBagLayout object
maintains a dynamic, rectangular grid of cells. Each component occupies
one or more cells known as its display area. Each component associates an
instance of GridBagConstraints. With the help of constraints object we
arrange component's display area on the grid. The GridBagLayout manages
each component's minimum and preferred sizes in order to determine
component's size.

Fields

Modifier and Type Field Description

double[] columnWeights It is used to

hold the

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

overrides to

the column

weights.

int[] columnWidths

It is used to

hold the

overrides to

the column

minimum

width.

protected

Hashtable<Component,GridBagConstraints

>

comptable

It is used to

maintains

the

association

between a

component

and its

gridbag

constraints.

protected GridBagConstraints
defaultConstraint

s

It is used to

hold a

gridbag

constraints

instance

containing

the default

values.

protected GridBagLayoutInfo layoutInfo

It is used to

hold the

layout

information

for the

gridbag.

protected static int MAXGRIDSIZE

No longer in

use just for

backward

compatibilit

y

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

protected static int MINSIZE

It is smallest

grid that can

be laid out

by the grid

bag layout.

protected static int PREFERREDSIZE

It is

preferred

grid size

that can be

laid out by

the grid bag

layout.

int[] rowHeights

It is used to

hold the

overrides to

the row

minimum

heights.

double[] rowWeights

It is used to

hold the

overrides to

the row

weights.

Useful Methods

Modifier and Type Method Description

void
addLayoutComponent(Component

comp, Object constraints)

It adds specified

component to

the layout, using

the specified

constraints

object.

void
addLayoutComponent(String name,

Component comp)

It has no effect,

since this layout

manager does

not use a per-

component

string.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

protected void

adjustForGravity(GridBagConstraints

constraints, Rectangle r)

It adjusts the x,

y, width, and

height fields to

the correct

values

depending on

the constraint

geometry and

pads.

protected void
AdjustForGravity(GridBagConstraints

constraints, Rectangle r)

This method is

for backwards

compatibility

only

protected void arrangeGrid(Container parent)
Lays out the

grid.

protected void ArrangeGrid(Container parent)

This method is

obsolete and

supplied for

backwards

compatibility

GridBagConstraints getConstraints(Component comp)

getLayoutAlignmentX(Container

It is for getting

the constraints

for the specified

component.

It returns the

float

float

parent)

getLayoutAlignmentY(Container

parent)

alignment along

the x axis.

It returns the

alignment along

the y axis.

int[][] getLayoutDimensions()

It determines

column widths

and row heights

for the layout

grid.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

protected

GridBagLayoutInfo

getLayoutInfo(Container parent, int

sizeflag)

This method is

obsolete and

supplied for

backwards

compatibility.

protected

GridBagLayoutInfo

GetLayoutInfo(Container parent, int

sizeflag)

This method is

obsolete and

supplied for

backwards

compatibility.

Point getLayoutOrigin()

It determines the

origin of the

layout area, in

the graphics

coordinate space

of the target

container.

double[][] getLayoutWeights()

It determines the

weights of the

layout grid's

columns and

rows.

protected

Dimension

getMinSize(Container parent,

GridBagLayoutInfo info)

It figures out the

minimum size of

the master

based on the

information from

getLayoutInfo.

protected

Dimension

GetMinSize(Container parent,

GridBagLayoutInfo info)

This method is

obsolete and

supplied for

backwards

compatibility

only

Example

1. import java.awt.Button;
2. import java.awt.GridBagConstraints;

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

3. import java.awt.GridBagLayout;
4.
5. import javax.swing.*;
6. public class GridBagLayoutExample extends JFrame{
7. public static void main(String[] args) {
8. GridBagLayoutExample a = new GridBagLayoutExample();
9. }
10. public GridBagLayoutExample() {
11. GridBagLayoutgrid = new GridBagLayout();
12. GridBagConstraints gbc = new GridBagConstraints();
13. setLayout(grid);
14. setTitle("GridBag Layout Example");
15. GridBagLayout layout = new GridBagLayout();
16. this.setLayout(layout);
17. gbc.fill = GridBagConstraints.HORIZONTAL;
18. gbc.gridx = 0;
19. gbc.gridy = 0;
20. this.add(new Button("Button One"), gbc);
21. gbc.gridx = 1;
22. gbc.gridy = 0;
23. this.add(new Button("Button two"), gbc);
24. gbc.fill = GridBagConstraints.HORIZONTAL;
25. gbc.ipady = 20;
26. gbc.gridx = 0;
27. gbc.gridy = 1;
28. this.add(new Button("Button Three"), gbc);
29. gbc.gridx = 1;
30. gbc.gridy = 1;
31. this.add(new Button("Button Four"), gbc);
32. gbc.gridx = 0;
33. gbc.gridy = 2;
34. gbc.fill = GridBagConstraints.HORIZONTAL;
35. gbc.gridwidth = 2;
36. this.add(new Button("Button Five"), gbc);
37. setSize(300, 300);
38. setPreferredSize(getSize());
39. setVisible(true);
40. setDefaultCloseOperation(EXIT_ON_CLOSE);
41.

42. }
43.

44. }

Output:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java JTree

The JTree class is used to display the tree structured data or hierarchical
data. JTree is a complex component. It has a 'root node' at the top most
which is a parent for all nodes in the tree. It inherits JComponent class.

JTree class declaration

Let's see the declaration for javax.swing.JTree class.

1. public class JTree extends JComponent implements Scrollable, Access
ible

Commonly used Constructors:

Constructor Description

JTree() Creates a JTree with a sample model.

JTree(Object[]

value)

Creates a JTree with every element of the specified array

as the child of a new root node.

JTree(TreeNode

root)

Creates a JTree with the specified TreeNode as its root,

which displays the root node.

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

Java JTree Example

1. import javax.swing.*;
2. import javax.swing.tree.DefaultMutableTreeNode;
3. public class TreeExample {
4. JFrame f;
5. TreeExample(){
6. f=new JFrame();
7. DefaultMutableTreeNode style=new DefaultMutableTreeNode("Style"

);
8. DefaultMutableTreeNode color=new DefaultMutableTreeNode("color"

);
9. DefaultMutableTreeNode font=new DefaultMutableTreeNode("font");

10. style.add(color);
11. style.add(font);
12. DefaultMutableTreeNode red=new DefaultMutableTreeNode("r

ed");
13. DefaultMutableTreeNode blue=new DefaultMutableTreeNode("

blue");
14. DefaultMutableTreeNode black=new DefaultMutableTreeNode

("black");
15. DefaultMutableTreeNode green=new DefaultMutableTreeNode

("green");
16. color.add(red); color.add(blue); color.add(black); color.add(gre

en);
17. JTree jt=new JTree(style);
18. f.add(jt);
19. f.setSize(200,200);
20. f.setVisible(true);
21. }
22. public static void main(String[] args) {
23. new TreeExample();
24. }}

Output:

Prof. Devi Prasad Mishra Dept .of IT GSE.BERHAMPUR

	History of Java
	Features of Java:
	Object Oriented Programming System(OOPS)
	Procedure to write simple java Program
	Setting Up the Path for Windows
	Setting Up the Path for Linux, UNIX, Solaris, FreeBSD
	Popular Java Editors
	JVM (Java Virtual Machine)
	What is JVM
	What it does
	JAVA VIRTUAL MACHINE
	II. CLASS, OBJECT AND METHODS
	Simple Class
	Object in Java
	Object Definitions:
	Java Identifiers
	III DATA TYPES
	Primitive Data Types
	byte
	short
	int
	long
	float
	double
	boolean
	char
	Java Literals
	Example
	Notation Character represented
	Java Variable Example: Add Two Numbers
	Java Variable Example: Widening
	Unicode System
	Java Tokens
	Variable
	IV OPERATORS & IF, Switch, loop Statements Operators in java
	Java If-else Statement
	Java IF Statement
	IF-else Statement
	Syntax:
	IF-else-if ladder Statement
	Syntax: (1)
	Switch Statement
	Syntax: (2)
	Example:
	Java For Loop
	Java Simple For Loop
	Syntax: (3)
	Example: (1)
	Java While Loop
	Syntax: (4)
	Java do-while Loop
	Java Break Statement
	Example: (2)
	Java Continue Statement
	Example: (3)
	V ARRAYS & COMMENTS in JAVA
	Advantage of Java Array
	Single Dimensional Array in java Syntax to Declare an Array in java
	Array initialization in java
	Example (1)
	Declaration, Instantiation and Initialization of Java Array
	Multidimensional array in java
	Syntax to Declare Multidimensional Array in java
	Example to instantiate Multidimensional Array in java
	Example to initialize Multidimensional Array in java
	Example of Multidimensional java array
	Java Comments
	Types of Java Comments
	1) Java Single Line Comment
	Syntax: (5)
	Example: (4)
	2) Java Multi Line Comment
	Syntax: (6)
	Example: (5)
	3) Java Documentation Comment
	Syntax: (7)
	VI CONSTRUCTORS
	Rules for creating java constructor
	Types of java constructors
	Difference between constructor and method in java
	Java Constructor Java Method
	Java static keyword
	1) Java static variable
	2) Java static method
	Example of static method
	this keyword in java
	Usage of java this keyword
	1) this: to refer current class instance variable
	2) this: to invoke current class method
	3) this() : to invoke current class constructor
	Calling default constructor from parameterized constructor:
	4) this: to pass as an argument in the method
	5) this: to pass as argument in the constructor call
	6) this keyword can be used to return current class instance
	Syntax of this that can be returned as a statement
	Example of this keyword that you return as a statement from the method
	UNIT -II
	VIII Polymorphism
	Advantage of method overriding
	super keyword in java
	Usage of java super Keyword
	1) super is used to refer immediate parent class instance variable.
	2) super can be used to invoke parent class method
	3) super is used to invoke parent class constructor.
	Method Overloading in Java
	Advantage of method overloading
	Different ways to overload the method
	1) Method Overloading: changing no. of arguments
	2) Method Overloading: changing data type of arguments
	Method Overriding in Java
	Usage of Java Method Overriding
	IX ABSTRACTION
	Ways to achieve Abstraction
	Abstract class in Java
	Example abstract class
	abstract method
	Example abstract method
	Example of abstract class that has abstract method
	Interface in Java
	Java Interface Example
	Differences between abstract class and interface that are given below. Abstract class Interface
	X PACKAGE
	Advantage of Java Package
	Simple example of java package
	How to compile java package
	How to access package from another package?
	Example of package that import the packagename.*
	Example of package by import package.classname
	Example of package by import fully qualified name
	Access Modifiers in java
	XI. STRING HANDLING in JAVA
	What is String in java
	How to create String object?
	1) String Literal
	2) By new keyword
	Java String class methods
	No. Method Description
	Java String compare
	1) String compare by equals() method
	2) String compare by == operator
	3) String compare by compareTo() method
	 s1 == s2 :0
	String Concatenation in Java
	1) String Concatenation by + (string concatenation) operator
	2) String Concatenation by concat() method
	Substring in Java
	Example of java substring
	StringTokenizer in Java
	Public method Description
	Example of nextToken(String delim) method of StringTokenizer class
	XII JAVA I/O TUTORIAL
	Stream
	Java BufferedInputStream Class
	UNIT III
	Hierarchy of Java Exception classes
	Difference between checked and unchecked exceptions
	2) Unchecked Exception
	3) Error
	Java Exception Handling Keywords
	Java try-catch Java try block
	Java Multi catch block
	Java finally block
	Why use java finally
	Case 1
	Case 3
	Java throw keyword
	Java throws keyword
	Syntax of java throws
	Java Custom Exception
	XIV MULTI THREADING IN JAVA
	Advantages of Java Multithreading
	What is Thread in java
	Life cycle of a Thread (Thread States)
	1) New
	2) Runnable
	3) Running
	4) Non-Runnable (Blocked)
	5) Terminated
	How to create thread
	Thread class:
	Commonly used Constructors of Thread class:
	Runnable interface:
	Starting a thread:
	1) Java Thread Example by extending Thread class
	2) Java Thread Example by implementing Runnable interface
	Sleep method in java
	Syntax of sleep() method in java
	Example of sleep method in java
	The join() method
	Syntax: (8)
	getName(),setName(String) and getId() method:
	Priority of a Thread (Thread Priority):
	3 constants defined in Thread class:
	Example of priority of a Thread:
	ThreadGroup in Java
	Constructors of ThreadGroup class
	No. Constructor Description
	ThreadGroup Example
	Synchronization in Java
	Why use Synchronization
	Types of Synchronization
	Thread Synchronization
	Mutual Exclusive
	Concept of Lock in Java
	Inter-thread communication in Java
	1) wait() method
	Method Description
	2) notify() method
	3) notifyAll() method
	Java Applet
	Advantage of Applet
	Drawback of Applet
	Hierarchy of Applet
	Commonly used methods of Graphics class:
	Example of Graphics in applet:
	EventHandling in Applet
	Example of EventHandling in applet:
	myapplet.html
	Java AWT Tutorial
	Java AWT Hierarchy
	Java AWT Button
	AWT Button Class declaration
	Java AWT Button Example
	Java ActionListener Interface
	actionPerformed() method
	Java ActionListener Example: On Button click
	Java LayoutManagers
	Java BorderLayout
	Java GridBagLayout
	Fields
	Useful Methods
	Example (2)
	Java Swing Tutorial
	Difference between AWT and Swing
	No. Java AWT Java Swing
	dependent. platform-independent.
	Java JButton
	JButton class declaration
	Commonly used Constructors: Constructor Description
	Commonly used Methods of AbstractButton class:
	Java JRadioButton
	JRadioButton class declaration
	Commonly used Constructors:
	Commonly used Methods:
	Java JRadioButton Example
	Java GridBagLayout (1)
	Fields (1)
	Useful Methods (1)
	Example (3)
	Java JTree
	JTree class declaration
	Commonly used Constructors: Constructor Description (1)
	Java JTree Example

