GANDHI SCHOOL OF ENGINEERING ## BHABANDHA, BERHAMPUR BRANCH:- ELECTRONICS & TELECOMMUNICATION ENGINEERING SEMESTER:- 5TH SUBJECT:- WAVE PROPAGATION & BROADBAND COMMUNICATION ENGINEERING Name of the Faculty- Er. Santosh Kumar Sahu | | | | Topic to be taken | | Actual topic taken | | | | |-----------|----------------------------------|---------------|--|--------------------------------|--------------------|---|---|---------| | Sl.
No | Topic/Module | No. of period | Details of the topics | Date | Topic No. | Topic Name | Date | Remarks | | 1 | WAVE
PROPAGATION &
ANTENNA | 12 | 1.1 Effects of environments such as reflection, refraction, interference, diffraction, absorption and attenuation (Definition only) 1.2 Classification based on Modes of Propagation-Ground wave, Ionosphere ,Sky wave propagation, Space wave propagation 1.3 Definition – critical frequency, max. useable frequency, skip distance, fading, Duct propagation & Troposphere scatter propagation actual height and virtual height 1.4 Radiation mechanism of an antenna-Maxwell equation. 1.5 Definition - Antenna gains, Directive gain, Directivity, effective aperture, polarization, input impedance, efficiency, Radiator resistance, Bandwidth, Beam width, Radiation pattern 1.6 Antenna -types of antenna: Mono pole and dipole antenna and omni directional antenna 1.7 Operation of following antenna with advantage & applications. a) Directional high frequency antenna: , Yagi & Rohmbus only b) UHF & Microwave antenna.: Dish antenna (with parabolic reflector) & Horn antenna 1.8 Basic Concepts of Smart Antennas- | 08/08/2023
TO
22/08/2023 | 1.2 | Effects of environments such as reflection, refraction, interference, diffraction, absorption and attenuation (Definition only) Classification based on Modes of Propagation-Ground wave, lonosphere ,Sky wave propagation, Space wave propagation Definition – critical frequency, max. useable frequency, skip distance, fading, Duct propagation & Troposphere scatter propagation actual height and virtual height Radiation mechanism of an antenna-Maxwell equation. | 08/08/2023
09/08/2023
&
10/08/2023
11/08/2023 | | | | | | Concept and benefits of smart antennas | | 1.5 | Definition - Antenna gains, | 14/08/2023 | |---|--------------|----|--|------------|-----|------------------------------------|-------------------| | | | | 1 | | 1.5 | Directive gain, Directivity, | & | | | | | | | | effective aperture, polarization, | 16/08/2023 | | | | | | | | input impedance, efficiency, | 25.00,2020 | | | | | | | | Radiator resistance, Bandwidth, | | | | | | | | | Beam width, Radiation pattern | | | | | | | | | pace | | | | | | | | 1.6 | Antenna -types of antenna: Mono | 17/08/2023 | | | | | | | | pole and dipole antenna and omni | | | | | | | | | directional antenna | | | | | | | | | | 18/08/2023 | | | | | | | 1.7 | Operation of following antenna | &
& | | | | | | | | with advantage & applications. | 19/08/2023 | | | | | | | | a) Directional high frequency | | | | | | | | | antenna:, Yagi & Rohmbus only | &
21/08/2023 | | | | | | | | b) UHF &Microwave antenna.: | 21/08/2023 | | | | | | | | Dish antenna (with parabolic | | | | | | | | | reflector) & Horn antenna | | | | | | | | | | 22/08/2023 | | | | | | | 1.8 | Basic Concepts of Smart | 22/00/2023 | | | | | | | | Antennas- Concept and benefits of | | | | | | | | | smart antennas | | | 2 | TRANSMISSION | 10 | 2.1 Fundamentals of transmission line. | 23/08/2023 | 2.1 | Fundamentals of transmission | 23/08/2023 | | | LINES | | 2.2 Equivalent circuit of transmission line & | ТО | | line. | | | | | | RF equivalent circuit | 07/09/2023 | | | | | | | | 2.3 Characteristics impedance, methods of | | 2.2 | Equivalent circuit of transmission | 24/08/2023 | | | | | calculations & simple numerical. | | | line & RF equivalent circuit | | | | | | 2.4 Losses in transmission line. | | | | | | | | | 2.5 Standing wave – SWR, VSWR, Reflection coefficient, simple numerical. | | 2.3 | Characteristics impedance, | 25/08/2023 | | | | | _ | | | methods of calculations & simple | & | | | | | 2.6 Quarter wave & half wavelength line | | | numerical. | 26/08/2023 | | | | | 2.7 Impedance matching & Stubs – single & double | | | | | | | | | 2.8 Primary & secondary constant of X- | | 2.4 | Losses in transmission line. | 28/08/2023 | | | | | mission line. | | | | | | | | | | | 2.5 | Standing wave – SWR, VSWR, | 29/08/2023 | | | | | | | | Reflection coefficient, simple | & | | | | | | | | numerical. | 31/08/2023 | | | | | | | | | 0.4 (0.0 (0.0 0.0 | | | | | | | 2.6 | Quarter wave & half wavelength | 01/09/2023 | | | | | | | | line | | | | | | | 2.7 | Impedance matching & Stubs – single & double | 04/09/2023 | |---|---------------------------|---|--------------------------------|-----|--|-------------------------------| | | | | | 2.8 | Primary & secondary constant of X-mission line. | 07/09/2023 | | 3 | TELEVISION
ENGINEERING | 77: da a da a da a: data da a a da a a a a a a a a | 11/09/2023
TO
29/09/2023 | 3.1 | Define-Aspect ratio, Rectangular
Switching. Flicker, Horizontal
Resolution, Video bandwidth,
Interlaced scanning, Composite
video signal, Synchronization
pulses | 11/09/2023
&
12/09/2023 | | | | diagram & function of each block. 3.4 Colour TV signals (Luminance Signal & Chrominance Signal, (I & Q,U & V Signals). 3.5 Types of Televisions by Technology- | | 3.2 | TV Transmitter – Block diagram & function of each block. | 13/09/2023
&
14/09/2023 | | | | cathode-ray tube TVs, Plasma Display Panels, Digital Light Processing (DLP), Liquid Crystal Display (LCD), Organic Light-Emitting Diode (OLED) Display, Quantum Light-Emitting Diode (QLED) – | | 3.3 | Monochrome TV Receiver -Block diagram & function of each block. | 15/09/2023
&
16/09/2023 | | | | only Comparison based on application 3.6 Discuss the principle of operation - LCD display, Large Screen Display. 3.7 CATV systems & Types & networks | | 3.4 | Colour TV signals (Luminance
Signal & Chrominance Signal,(I &
Q,U & V Signals). | 21/09/2023
&
22/09/2023 | | | | 3.8 Digital TV Technology-Digital TV Signals, Transmission of digital TV signals & Digital TV receiver Video programme processor unit. | | 3.5 | Types of Televisions by Technology- cathode-ray tube TVs, Plasma Display Panels, Digital Light Processing (DLP),Liquid Crystal Display (LCD),Organic Light-Emitting Diode (OLED) Display, Quantum Light-Emitting Diode (QLED) – only Comparison based on application | 23/09/2023
&
25/09/2023 | | | | | | 3.6 | Discuss the principle of operation -
LCD display, Large Screen Display. | 26/09/2023 | | | | | | 3.7 | CATV systems & Types & networks | 27/09/2023 | | | | | | | 3.8 | Digital TV Technology-Digital TV Signals, Transmission of digital TV signals & Digital TV receiver Video | 29/09/2023 | |---|----------------------------|----|--|--------------------------------|--------------------------|--|--| | 4 | MICROWAVE
ENGINEERING | 15 | 4.1 Define Microwave Wave Guides. 4.2 Operation of rectangular wave gives and its advantage. 4.3 Propagation of EM wave through wave guide with TE & TM modes. 4.4 Circular wave guide. 4.5 Operational Cavity resonator. 4.6 Working of Directional coupler, Isolators & Circulator. 4.7 Microwave tubes-Principle of operational of two Cavity Klystron. 4.8 Principle of Operations of Travelling Wave Tubes 4.9 Principle of Operations of Cyclotron 4.10 Principle of Operations of Tunnel Diode | 30/09/2023
TO
18/10/2023 | 4.1
4.2
4.3
4.4 | programme processor unit. Define Microwave Wave Guides. Operation of rectangular wave gives and its advantage. Propagation of EM wave through wave guide with TE & TM modes. Circular wave guide. Operational Cavity resonator. | 30/09/2023
31/09/2023
03/10/2023
&
04/10/2023
06/10/2023
&
07/10/2023 | | | | | & Gunn diode | | 4.6 | Working of Directional coupler, Isolators & Circulator. | 10/10/2023
&
11/10/2023 | | | | | | | 4.7 | Microwave tubes - Principle of operation of two Cavity Klystron. | 12/10/2023
&
13/10/2023 | | | | | | | 4.8 | Principle of Operations of
Travelling Wave Tubes | 14/10/2023
&
16/10/2023 | | | | | | | 4.9 | Principle of Operations of
Cyclotron | 17/10/2023 | | | | | | | 4.10 | Principle of Operations of Tunnel
Diode & Gunn diode | 18/10/2023 | | 5 | BROADBAND
COMMUNICATION | 10 | 5.1 Broadband communication system-
Fundamental of Components and Network
architecture | 31/10/2023
ГО
10/11/2023 | 5.1 | Broadband communication system-Fundamental of Components and Network | 31/10/2023
&
01/11/2023 | | 5.2 Cable broadband data network- architecture, importance & future of broadband telecommunication internet based network. 5.3 SONET(Synchronous Optical Network)- Signal frame components topologies advantages applications, and disadvantages 5.4 ISDN - ISDN Devices interfaces, services, Architecture, applications, 5.5 BISDN -interfaces & Terminals, protocol architecture applications | architecture, importance & future of broadband telecommunication internet based network. 5.3 SONET(Synchronous Optical Network)-Signal frame | 02/11/2023
&
03/11/2023
04/11/2023
&
06/11/2023 | |---|---|--| | | services, Architecture, | 07/11/2023
&
08/11/2023 | | | protocol architecture applications | 09/11/2023
&
10/11/2023 |